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Abstract — This paper proposed a novel neural network 
model, named multi-layer perceptrons with embedded feature 
selection (MLPs-EFS), where feature selection is incorporated 
into the training procedure. Compared with the classical MLPs, 
MLPs-EFS add a preprocessing step where each feature of the 
samples is multiplied by the corresponding scaling factor. By 
applying a truncated Laplace prior to the scaling factors, 
feature selection is integrated as a part of MLPs-EFS. Moreover, 
a variant of MLPs-EFS, named EFS+MLPs is also given, which 
perform feature selection more flexibly. Application in cancer 
classification validates the effectiveness of the proposed 
algorithms. 
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I. Introduction 
With the wide application of information technology, one 

has a growing chance to confront high dimensional data sets 
with hundreds or thousands of features. Typical examples 
include text processing of internet documents, gene 
expression array analysis, and combinatorial chemistry. 
These data sets often contain many irrelevant and redundant 
features, hence an effective feature selection scheme becomes 
a key factor in determining the performance of a classifier. 
The purpose of feature selection is to find the smallest subset 
of features that result in satisfactory generalization 
performance. The potential benefits of feature selection are at 
least three-fold [1-2]: 

① Improving the generalization performance of 
learning algorithm by eliminating the irrelevant and 
redundant features; 

② Enhancing the comprehensibility of learning 
algorithm by identifying the most relevant feature subset; 

③ Reducing the cost of future data collection and 
boosting the test speed of learning algorithm by only utilizing 
a small fraction of all features. 

In MLPs, the input of hidden unit is the linear combination 
of all the components of samples. This mechanism is highly 
effective for feature extraction, but not for feature selection 
since the weight of each component is often non-zero. 
Therefore, various new methods have been proposed to select 
a good feature subset for MLPs. In 1997, Setiono and Liu [3] 
developed a backward elimination method, named neural 

network feature selector (NNFS) for feature selection. NNFS 
encourages the small weights to converge to zeros by adding 
a penalty term to the error function. In 2002, Hsu et al. [4] 
proposed a wrapper method, named ANNIGMA-wrapper for 
fast feature selection. In 2004, Sindhwani et al. [5] presented 
a maximum output information (MOI-MLP) algorithm for 
feature selection. Due to the vast and extensive literatures in 
feature selection for MLPs, we only mentioned a small 
fraction of them and the reader can refer to [6] for more 
information.  

In this paper, we present a neural networks model, named 
MLPs-EFS that incorporates feature selection into the 
training procedure. Compared with the classical MLPs, 
MLPs-EFS add a preprocessing step where each feature of 
the samples is multiplied by the corresponding scaling factor. 
In order to achieve feature selection, a truncated Laplace 
prior is applied to the scaling factors. Some researchers [7] 
have shown that the Laplace prior promotes sparsity and 
leads to a natural feature selection. The sparsity-promoting 
nature of Laplace prior is discussed in the literature [8]. 
Moreover, we also derive a variant of MLPs-EFS, named 
EFS+MLPs that can perform feature selection more flexibly. 
Application in cancer classification validates the 
effectiveness of the proposed algorithms 

The rest of this paper is organized as follows. Section II 
presents the MLPs-EFS and EFS+MLPs algorithms. Section 
III reports the experimental results of proposed algorithms 
and compares them with the results obtained by several 
existing algorithms. Section IV discusses the contributions of 
this paper 

II. Multi-layer Perceptrons with Embedded 
Feature Selection 

Consider the three-layer perceptrons with embedded 
feature selection shown in Fig. 1. The error measure we 
optimize is the sum of the squared difference between the 
desired output and the actual output, 
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where we have the following: 
 l  is the number of training samples. 



 c  is the number of output units that is equal to the 
number of category. 

 ( )my  is the output vector of the m-th class using the 
“one-vs-all” encoding scheme, which satisfies ( ) 1m

iy =  
if the i-th sample belongs to the m-th class, and ( ) 0m

iy =  
otherwise. 

 ( )mv  is the weight vector from hidden units to the m-th 
output unit. 

 ijH  is the output of the i-th sample at the j-th hidden 
unit, 

( )( ) ( )( ) ( )( )2Tj i j
ij h bφ= ⊗ +H w α x .  (2) 

 ⊗  denotes the elementwise multiplication. 
 ( )ix  is the i-th input vector. 
 2α  is the scaling factors of input vector. Note that 

2α  denotes ⊗α α . 
 ( )jw  is the weight vector from the input layer to 

the j-th hidden unit. 
 ( )jb  is the bias term of the j-th hidden unit. 
 oφ  and ( )hφ i  are the activation function that often 

is the logistic function, hyperbolic tangent function, 
or linear function. 
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Fig. 1. Three-layer perceptrons with embedded feature 

selection 

Compared with the classical MLPs, MLPs-EFS add a 
preprocessing step where each feature of the samples is 
multiplied by the corresponding scaling factor 2

iα . After 
MLPs-EFS are trained, the importance of features can be 
identified by the magnitude of the scaling factors. That is, the 
irrelevant and the redundant features are associated with the 
small scaling factors and the relevant features with the large 
scaling factors. Since we hope that the irrelevant and the 
redundant features affect learning procedure as little as 
possible, it is necessary to make the small scaling factors 
close to zeros. To achieve this goal, we adopt a truncated 
Laplace prior as shown in Fig. 2. over the scaling factors 
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where n  is the feature dimensionality of the samples, 
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intensity of the prior.  

 
Fig. 2. Prior over the scaling factor 2

iα  

If we do not restrict the weights from input layer to hidden 
layer, it may become very large. To avoid this case, we adopt 
a Gaussian prior over those weights 
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where h  is the number of hidden units, ( ) ( )( )22
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denotes the 2-norm and 2λ  controls the intensity of the prior. 
Considering the error measure along with the prior, we 

obtain a penalized maximum likelihood estimate of the 
scaling factors and the weights by minimizing the following 
expression 
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Like the original MLPs, the optimization problem that 
MLPs-EFS confront with is unconstrained. Hence, all the 
optimization algorithms applied to MLPs are also suitable for 
MLPs-EFS. In order to speedup the training procedure, 
instead of the standard backpropagation (BP) algorithm, a 
variant of the conjugate gradient, named scaled conjugate 
gradient (SCG) [9], is used to find a local minimum of the 
objective function ( ), ,f w v α . SCG is fully automated 
including no user dependent parameters and avoiding a time 
consuming line-search. Experimental study performed by 
Moller in 1993 showed that SCG yields a speedup of at least 
an order of magnitude relative to BP. Demuth’s test report 
[10] also showed that SCG performs well over a wide variety 
of problems, particularly for networks with a large number of 
weights. 

MLPs-EFS add the scaling factors; hence, the number of 
its free parameters is slightly larger than that of MLPs. 
However the training time of MLPs-EFS is comparable with 
that of MLPs because the number of free parameters added 
by MLPs-EFS is far smaller than the total number of the free 
parameters of MLPs. For example, for a network with ten 
hidden units and three output units, the number of free 
parameters of MLPs-EFS is only 1.08 times that of MLPs if 
the feature dimensionality of the samples is 10. Similar 
conclusion also holds true for the test time.  

After MLPs-EFS are trained, there exist some scaling 
factors that are very close to but not exactly zeros. To remove 
the features with small scaling factors from network, we need 



a variant of MLPs-EFS, named EFS+MLPs that can be 
described as the following: 

1. Train MLPs-EFS with the full features; 
2. Rank the importance of features according to the 

magnitude of the scaling factors; 
3. Reserve the d most important features; 
4. Train MLPs only with the reserved d features. 

III. Comparisons with Existing Algorithms 
In order to know how well MLPs-EFS and EFS+MLPs 

work, we compare them with FDR+MLPs and SVM RFE [11] 
on three data sets. XOR1 are artificially constructed problems 
which are variants of classical XOR problem. Leukemia and 
Lymphoma are cancer data sets, which are available at 
http://llmpp.nih.gov/lymphoma and http://www-genome.wi.-
mit.edu/mpr. For cancer classification, one needs to 
determine the relevant genes in discrimination as well as 
discriminate accurately, so our algorithms are very suitable 
for these problems. 

The regularization parameter 2λ  in MLPs-EFS is fixed to 
0.00001, and 1λ  and h  are chosen using the ten-fold cross 
validation on training samples. All the scaling factors are 
initialized to 1. The input and hidden-to-output weights are 
randomly initialized in the range [1 h ,1 h ]. 

FDR+MLPs: Fisher discriminant ratio (FDR) is a well 
known filter method that assigns the importance of each 
feature independently based on its ability to distinguish 
classes. FDR of the i-th feature is given by 
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where ( )iμ  and ( )( )k iμ  are the mean and the class-
conditional mean of the i-th feature, respectively, and C  and 

km  are the number of classes and of samples that belong to 
the k-th class. A larger FDR value suggests that the 
corresponding feature is better able to distinguish classes. 
Hence, feature selection can be implemented by removing the 
features with smaller FDR values. In this paper, FDR is 
regarded as a baseline method. 

SVM RFE: Recursive feature elimination (RFE) is a 
recently proposed feature selection algorithm described by 
Guyon et al. This method tries to find the best feature subset 
which leads to the largest margin of class separation for 
support vector machine (SVM) classifier. RFE approximates 
the solution of this combinatorial problem by a greedy 
algorithm, which removes the features that decrease the 
margin step by step. 

XOR problem is very popular for testing the performance 
of neural networks. Here, we restrict each feature to be drawn 
from the uniform distribution between -1 and 1. The label is 
defined as 
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The points with 1y =  lie in the first or third quadrant and 
those with 1y = −  in the second or fourth quadrant. The 
optimal decision function of this problem is non-linear and 
the highest recognition rate of linear classifiers is only 
66.67%.  

XOR1: XOR1 is a variant of XOR problem (7) and 
derived by adding 18 redundant features which are copies of 
the first two features and 20 irrelevant features which are 
drawn from the uniform distribution between -1 and 1, 
simultaneously. The full data set consists of 1000 training 
samples and 1000 test samples. 

From Fig. 3, we observe that EFS+MLPs successfully 
identify the relevant features on XOR1 problems; however 
FDR+MLPs fail to find the exact relevant features. This 
group of experiments suggests that EFS+MLPs can 
effectively handle both irrelevant and redundant features and 
however FDR+MLPs have some difficulties in removing the 
relevant and redundant features. 

     
Fig. 3. Scaling factor  and FDR of each feature on XOR1 

Leukemia: This problem is to distinguish two variants of 
leukemia (ALL and AML). The data set consists of 38 
training samples (27 ALL and 11 AML) and 34 test samples 
(20 ALL and 14 AML). The number of features for this 
problem is 7129 and much higher than that of the samples. 
Before experiments, all the features are scaled to have zero 
mean and unit variance. The final accuracies are averaged 
over 30 random splits. Table 1. lists the performance of 
MLPs-EFS and EFS+MLPs on feature subsets of size 4, 8, 16, 
32, 64, 128, 256, 512, 1024, 2048, 4096, 7129, and compares 
them with the results obtained by FDR+ MLPs and SVM 
RFE. For this problem, EFS+MLPs and SVM RFE obtain the 
highest accuracy. MLPs-EFS significantly outperform MLPs 
without feature selection. 

Lymphoma: This problem is to distinguish the malignant 
and normal lymphoma. 61 of the samples are in classes 
“DLCL”, “FL” or “CLL” (malignant) and 35 are labeled 
“otherwise” (normal). The number of features for this 
problem is 4026 and much higher than that of the samples. 
Before experiments, all the features are scaled to have zero 
mean and unit variance. Most authors have randomly split the 
96 samples set into a training set of size 60 and a test set of 
size 36. For the sake of comparison, we adopt the same 
scheme. The final accuracies are averaged over 30 random 
splits. Table 2. lists the performance of MLPs-EFS and 
EFS+MLPs on feature subsets of size 20, 50 100, 250, 500 
1000, 2000, 3000 and 4206, and compares them with the 
results obtained by FDR+MLPs and SVM RFE. We observe 
that EFS+MLPs obtain the highest accuracy on feature subset 
of size 250. The accuracy of MLPs-EFS is higher than that of 
MLPs without feature selection. 



Table 1. Accuracies of four classifiers on Leukemia data set 
and F. denotes the number of the features. 

F. FDR+MLPs MLPs-EFS EFS+MLPs SVM RFE
4 88.24 / 91.18 91.18 
8 91.18 / 97.06 100.00 

16 97.06 / 100.00 100.00 
32 97.06 / 100.00 97.06 
64 97.06 / 97.06 94.12 
128 94.12 / 97.06 97.06 
256 91.18 / 94.12 94.12 
512 94.12 / 91.18 88.24 

1024 94.12 / 94.12 94.12 
2048 91.18 / 91.18 85.29 
4096 73.53 / 85.29 70.59 
7129 82.35 94.12 82.35 85.29 

Table 2. Accuracies of five classifiers on Lymphoma data set 
and F. denotes the number of the features. 

F. FDR+MLPs MLPs-EFS EFS+MLPs SVM RFE
20 87.78 / 91.57 90.83 
50 91.39 / 94.26 93.06 
100 91.67 / 94.35 93.43 
250 91.57 / 94.72 93.52 
500 92.31 / 93.89 93.06 

1000 92.22 / 92.87 92.04 
2000 91.11 / 92.50 92.13 
3000 90.00 / 92.31 92.13 
4206 90.09 93.08 92.13 92.13 

IV. Discussions 
Due to space limitation, this paper only discusses the 

MLPs, but it is possible to apply our method to other neural 
network models since the proposed idea is very general. Also, 
comparing our algorithm with Biomimetic Pattern 
Recognition [12] is an interesting work. Further research will 
focus on these. 
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