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Abstract

The potential success of discriminative learning ap-
proaches to 3D reconstruction relies on the ability to effi-
ciently train predictive algorithms using sufficiently many
examples that are representative of the typical configura-
tions encountered in the application domain. Recent re-
search indicates that sparse conditional Bayesian Mixture
of Experts (cMoE) models (e.g. BME [21]) are adequate
modeling tools that not only provide contextual 3D pre-
dictions for problems like human pose reconstruction, but
can also represent multiple interpretations that result from
depth ambiguities or occlusion. However, training condi-
tional predictors requires sophisticated double-loop algo-
rithms that scale unfavorably with the input dimension and
the training set size, thus limiting their usage to 10,000
examples of less, so far. In this paper we present large-
scale algorithms, referred to as fBME, that combine for-
ward feature selection and bound optimization in order to
train probabilistic, BME models, with one order of magni-
tude more data (100,000 examples and up) and more than
one order of magnitude faster. We present several large
scale experiments, including monocular evaluation on the
HumanEva dataset [19], demonstrating how the proposed
methods overcome the scaling limitations of existing ones.

1. Introduction

This paper is motivated by our interest in making large
scale conditional (also known as discriminative) 3D human
pose prediction methods practical in terms of training time,
number of examples and input / output dimensions. Al-
though we demonstrate human pose prediction, the meth-
ods – generically known as conditional mixture of experts
(cMoE) – are potentially relevant to a larger community, in-
cluding researchers who study 3D reconstruction or object
recognition.

The versatility of cMoE [21, 22] relies on a balanced
combination of several attractive properties, some long
sought by computer vision researchers: (i) conditioning on
input eliminates the need for simplifying naive Bayes as-
sumptions, common with generative models, and allows

for diverse, potentially non-independent feature functions
of the input (in this case, the image) to be encoded in its
descriptor. This makes possible to model non-trivial im-
age correlations and enhances the predictive power of the
input representation. (ii) multivaluedness of outputs allows
for multiple plausible hypotheses – as opposed to a single
one – to be faithfully represented; (iii) contextual predic-
tions offer versatility by means of ranking (gating) functions
that are paired with the experts, and adaptively score their
competence in providing solutions, for each input. This al-
lows for nuanced, finely tuned responses; (iv) probabilistic
consistency enforces data modeling according to its den-
sity via formal, conditional likelihood parameter training
procedures; (v) Bayesian formulations and automatic rele-
vance determination mechanisms favor sparse models with
good generalization capabilities. All these features make
the cMoE model suitable for fast, automatic feedforward
3D prediction, either as a stand alone, indexing system, or
as an initialization method, in conjunctionwith complemen-
tary visual search and feedback mechanisms [21, 22, 3].

Nevertheless, a significant downside of existing cMoE
algorithms [10, 5, 2, 11, 22] is their scalability. The al-
gorithms require an expensive double loop algorithm (an
iteration within another iteration) based on Newton opti-
mization, to compute the gate functions, a factor that makes
models with more than 10,000 datapoints and large input
dimension impractical to train. In this paper we present
new, computationally efficient cMoE algorithms that com-
bine forward feature selection based on marginal likelihood
and functional gradient boosting with techniques based on
bound optimization, in order to train models that are one
order of magnitude larger (100,000 examples and up), in
time that is more than one order of magnitude faster than
previous methods. We present several large scale experi-
ments, including quantitative monocular evaluation on the
HumanEva [19] dataset, demonstrating that the algorithms
are accurate and overcome the scaling challenges of exist-
ing ones.

1.1. Related Work

This research connects to structured prediction, feature
selection, and conditional mixture modeling, as well as vi-
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sual human pose estimation. Discriminative methods for
human pose reconstruction have recently seen a revival, as
a result of advances in feature extraction and machine learn-
ing methods. The algorithms range from nearest-neighbor
[18, 15], to regression, probabilistic mixture of predictors
and their conditional counterparts [16, 21, 20]. See [11, 14]
for multivalued extensions based on semi-supevised mani-
fold methods.

Sparse probabilistic Bayesian formulations for regres-
sion and conditional mixture of experts have been presented
in [1] and [21], respectively, but both use backward elimina-
tion to select features, which makes them less efficient – the
sub-problems solved during the first steps of model train-
ing are high-dimensional and require large memory storage
and substantial computational resources. Forward predic-
tive regression methods exist [23, 24] but they have not been
adapted to the conditional mixture of experts problem. Vin-
cent and Bengio [24] proposed kernel matching pursuit and
discussed back-fitting, and Friedman [7] shows how to per-
form feature selection in function space, for arbitrary differ-
entiable loss functions. Efficient forward selection methods
for Gaussian Process learning are given in [25, 17], for a
tutorial see [8].

Besides the input dimension or the dataset size, models
trained using Conditional-EM [10, 5, 2, 9, 21] face addi-
tional bottlenecks: fitting the gate functions requires iter-
ative second-order methods. Bound optimization methods
for general C-EM algorithms have been discussed in [9],
but obtaining global variational upper bounds is expensive
and requires the computation of the Hessian matrix w.r.t. the
model parameters at each iteration.

Our fast, large-scale algorithm for conditional mixture of
Bayesian expert models (fBME) employs techniques based
on forward feature selection and bound optimization in or-
der to sequentially (and greedily) optimize lower bounds on
the conditional likelihood of the model, given training data.
We use forward selection schemes based on decomposing
the marginal likelihood with respect to one additional fea-
ture, in order to train the experts, and use feature selection
based on functional gradient boosting for training the gates.
Fitting of the gates is a convex, but non-quadratic problem
that requires iterative methods. To make these fast, we ex-
ploit a remarkable, input dependent, constant lower bound
on the Hessian matrix of the gate likelihood w.r.t. their pa-
rameters, and efficiently construct updates using an alterna-
tion scheme. To our knowledge, the algorithm we propose
is novel for both computer vision and machine learning, and
appears to be the first of this kind capable of training con-
ditional Bayesian mixture of experts models (BME) with
multivariate (high-dimensional) inputs and outputs, using
datasets of 100,000 examples or more, in time that makes it
reasonably practical.1

1Notice the difference between conditional models and clusterwise ex-

2. Fast Conditional Algorithms (fBME)

This section describes efficient algorithms for training
sparse conditional Bayesian mixtures of experts with high-
dimensional inputs and for large training sets. To simplify
notation, we review models with one state (output) dimen-
sion, being understood that the formulation generalizes to
multivariate state spaces, either by training separate models
for each output or by extending a single model to provide
vector-valued (as opposed to scalar) prediction.

2.1. Conditional Mixture of Experts

We work with a probabilistic conditional model:

P (x|r) =
M∑

j=1

gj(r)pj(x) (1)

with:

gj(r) ≡ g(r|λj) =
eλ�

j r

∑
k eλ�

k r
(2)

pj(x) ≡ pj(x|r,wj , σ
2
j ) ∼ N (x|w�

j r, σ2
j I) (3)

where r are predictor variables, x are outputs or responses,
g are input dependent positive gates. g are normalized to
sum to 1 for consistency, by construction, for any given in-
put r. In the model, p are Gaussian distributions (3) with
variance σ2I, centered at linear regression predictions given
by models with weights w. Whenever possible, we drop
the index of the experts (but not the one of the gates). The
weights of experts have Gaussian priors, controlled by hy-
perparameters α:

p(w|α) = (2π)−D/2
D∏

d=1

α
1/2
d exp{−αdw

2
d

2
} (4)

with dim(w) = D. The parameters of the model, in-
cluding experts and gates are collectively stored in θ =
{(wi, αi, σi, λi) | i = 1 . . .M}.

To learn the model, we design iterative, approximate
Bayesian EM algorithms. In the E-step we estimate the pos-
terior:

hj ≡ hj(x, r|wj , σj , λj) =
gj(r)pj(x)∑M

k=1 gk(r)pk(x)
(5)

and let h
(i)
j = hj(x(i), r(i)) be the probability that the ex-

pert j has generated datapoint i. Parenthesized superscripts
index datapoints. In the M-step we solve two optimization
problems, one for each expert and another for its gate. The
first learns the expert parameters, based on training data
weighted according to the current membership estimates

pert models, where data is partitioned and an expert is fit to each one.
Clusterwise expert models do not face scaling problems, but lack expert
ranking. To use multivalued models without a supplementary verification
step, one needs conditional parameterizations. These do not only provide
multiple predictions, but also their consistent contextual ranking.



h. The second optimization trains the gates g to predict
h. The complete log-likelihood (Q-function) for the condi-
tional mixture of Bayesian experts can be derived as [10]:

Q =
N∑

i=1

log P (x(i)|r(i)) = (6)

=
N∑

i=1

M∑
j=1

h
(i)
j (log g

(i)
j + log p

(i)
j ) = (7)

= Lg + Lp (8)

The likelihood decomposes into two factors, one for the
gates and the other for the experts. The experts can be
fitted independently using sparse Bayesian learning, un-
der the change of variables r(t) ←

√
h(t)r(t) and x(t) ←√

h(t)x(t). The equations for the gates are coupled and re-
quire iteration during each M-step. Although the problem is
convex, it is computationally expensive to solve because the
cost is not quadratic and the inputs are high-dimensional.
A classical iteratively reweighted least squares (IRLS), or
a naive Newton implementation, requires O(N(MD)2 +
(MD)3) computation, multiple times during each step
which is prohibitive for large problems (e.g. for 15 experts
and 10000 training samples with 1000 input dimension,
the computational cost becomes untenable even on today’s
most powerful desktops). Note that the cost of comput-
ing the Hessian (the first complexity term above) becomes
higher than the one of inverting it (the second term) when
the number of training samples is very large.

2.2. Training the Experts

For Bayesian learning with Gaussian priors and observa-
tion likelihoods, the expert posterior and predictive uncer-
tainty (marked with ‘*’) are computable in closed form:

μ = σ2ΣRX,Σ = (σ−2RR� + A)−1 (9)

x∗ = μ�r, (σ2)∗ = r�Σr (10)

where A = diag[α1, . . . , αD], R stores the training set
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Figure 1. Mean prediction and errorbars for one variable of our
Bayesian model (see (9) for derivations).

inputs columnwise and X their corresponding vector of x-
outputs (see fig. 1 for illustration). The marginal likelihood
of the experts is:

Lp(α) =
N∑

i=1

log p(x(i)|r(i), α, σ2) = (11)

=
N∑

i=1

log
∫

p(x(i)|r(i),w, σ2)p(w|α)dw =

(12)

= −1
2
{N log 2π + log |K|+ X�K−1X} (13)

where K = σ2I + R�A−1R. It can be shown that the
marginal likelihood decomposes as [23]:

Lp(α) = Lp(α\i) + l(αi) (14)

with

l(αi) =
1
2
{log αi − log(αi + si) +

q2
i

αi + si
} (15)

where si = C�
i K−1

\i Ci and qi = C�
i K−1

\i X, Ci collects

the ith column from the matrix R�, K\i, α\i are the ma-
trix and vector obtained with the corresponding entry of the
input vector removed, and Lp(α\i) is the log-likeihod for
the corresponding model. It is known [23] that Lp(α) has
a unique maximum w.r.t. parameter αi, which is either fi-
nite and equal to s2

i /(q2
i − si) if q2

i > si or infinite other-
wise. This forms the basis for our forward selection pro-
cess that starts with one input dimension and incrementally
adds one more dimension, as long as the marginal likeli-
hood is increased or a desired sparsity level is reached. In
each step we maximize across remaining dimensions and
hyperparameters αj in order to add a new input index i to
the active set S, with: i = arg max{j /∈S} l(αj). Hyperpa-
rameters are re-estimated, hence not only new dimensions
are added to the active set S, but ones already present are
removed, if their values follow q2

i ≤ si. The procedure
stops when there is no increase in the marginal likelihood,
or a given level of sparsity is reached. Usually, only a small
fraction of the input dimensions is selected, which makes
the computational cost of learning each expert significantly
lower thanO(ND2 + D3).

2.3. Training the Gates

The log-likelihood component that corresponds to the
gates decomposes as (λ is the D ×M -dimensional vector
of all gate parameters λi):

Lg(λ) =
N∑

i=1

M∑
j=1

h
(i)
j log g

(i)
j = (16)

=
N∑

i=1

M∑
j=1

{h(i)
j λ�

j ri − log
M∑

j=1

exp(λ�
j ri)} (17)



For efficiency, we use bound optimization [13, 12]
and maximize a surrogate function F with λ(t+1) ←
argmaxλF(λ|λ(t)) (the upper parameter superscript in-
dexes the iteration number in this case). This is guaran-
teed to monotonically increase the objective, provided that
Lg(λ) − F(λ|λ(t)) reaches its minimum at λ = λ(t). A
natural surrogate is the second-order Taylor expansion of
the objective around λ(t), with a bound Hb on its second
derivative (Hessian) matrix H, so that H(λ) � Hb, ∀λ:

F(λ|λ(t)) =
1
2
λ�Hbλ + λ�(g(λ(t))−Hbλ

(t)) (18)

The gradient and Hessian of Lg can be computed analyti-
cally:

g(λ) =
N∑

i=1

(Ui − vi(λ))⊗ ri (19)

with Ui = [h(i)
1 , . . . , h

(i)
M ]�, ⊗ the Kronecker product, and

vi(λ) = [g1(ri), . . . , gM (ri)]�. The Hessian of Lg is:

H(λ) = −
N∑

i=1

(Vi(λ)− vi(λ)vi(λ)�)⊗ (rir�i ) (20)

where Vi(λ) = diag[g1(ri), . . . , gM (ri)] (the dimension-
ality of the Hessian is D × M ). The Hessian is lower
bounded by a negative definite matrix which depends on
the input, but remarkably, is independent of λ [4]:

H(λ) � Hb ≡ −1
2
[I− 11�

M
]⊗

N∑
i=1

rir�i (21)

where 1 = [1, 1, . . . , 1]�. The parameter update is based
on the standard Newton step:

λ(t+1) ← λ(t) −H−1
b g(λ(t)) (22)

To fit the gates we use a forward greedy algorithm that
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Figure 2. Comparative convergence behavior of our Bound Op-
timization (BO) and the Conjugate Gradient (CG) method when
fitting the gates on a training set of 35,000 datapoints. Notice
the rapid convergence of BO and that after significantly more it-
erations CG has not yet converged to the maximum of the log-
likelihood.

combines gradient boosting and bound optimization. It se-
lects the variables according to functional gradient boosting

[7] and optimizes the resulting sub-problems using bound
optimization, as described above. To compute the func-
tional gradient, we rewrite the objective in terms of func-
tions Fj(r(i)). This method is applicable to any differen-
tiable log-likelihood:

Lg =
N∑

i=1

M∑
j=1

{h(i)
j Fj(r(i))− log

M∑
j=1

exp(Fj(r(i))} (23)

The functional gradient corresponding to one component of
Fj is:

d
(i)
j =

∂Lg(Fj(r(i)))
∂Fj(r(i))

= (24)

= h
(i)
j −

exp(Fj(r(i)))∑M
j=1 exp(Fj(r(i)))

(25)

with the full gradient of the jth gate assembled as ∇fj =
[d(1)

j , . . . , d
(N)
j ]� – the steepest descent direction in func-

tion space. For feature selection, we choose the row vector
v of R with weight index not already in the active set S,
and most correlated (collinear) with the gradient [7]:

i = argmax
k/∈S,j=1...M

|v�
k ∇fj | (26)

We initialize λ = 0 and select the ith variable, incremen-
tally, based on the gate parameter estimates at the previous
round of selection. Once the ith variable is selected, we op-
timize (16) with respect to all pre-selected i variables using
bound optimization. We use the solution of the previous it-
eration to quick-start the current optimization problem (this
is convex but a good initialization spares iterations). The
advantage of bound optimization in a greedy forward se-
lection context is that we can efficiently update the Hessian
bound using the Woodbury inversion identity. Thus, the cost
of each iteration is O(cNMD) where c is a small constant,
and the total cost of selecting the k variables isO(kNMD).
When the specified number of variables is reached, we ter-
minate. Unlike gradient boosting where the only current
selected variable is optimized, we also perform back-fitting
[24], i.e. optimize all selected variables in each round. To
speed-up computation, it is possible to optimize the weights
of the gating networks sequentially–fix the weights of other
gating networks than the one currently optimized–the prob-
lem in (24). This requires the solution to a sequence of
k-dimensional problems (usually k << D) and can be sig-
nificantly cheaper than updating all gate parameters simul-
taneously, especially when denser (less sparse) models are
desired. To sparsify the gating network, one can consider
forward selection ideas based on maximizing the marginal
likelihood, along the same lines as used for experts. How-
ever, the computational cost of this approach is high even
for fast Bayesian approximations to multinomial classifica-
tion. Differently from Bayesian regression, there is no an-
alytical expression for the marginal likelihood, hence we



have to resort on Laplace approximation. But this only
works around the maximized posterior point, so we have to
recompute the most probable weight and the corresponding
Hessian matrix after adding or deleting an input entry (or
basis function). For large problems this operation is com-
putationally prohibitive.

3. Experiments

We analyze the HumanEva dataset [19], which contains
a number of sequences that include walking, jogging, throw
catch, gestures, and boxing. Our tests are quite extensive,
but we stress that our primary goal is to demonstrate algo-
rithm’s performance for large training sets and with high-
dimensional input and output, rather than to comprehen-
sively study a particular dataset. The part and structure of
the dataset we use is given in table 1.2

Dataset Action S1 S2 S3 Total
Walking 612 437 490 1539

Jog 251 396 440 1087
Throw/Catch 0 560 0 560

Training Gestures 405 400 568 1373
set Box 403 351 508 1262

Total 1671 2144 2006 5821

Walking 585 433 443 1461
Jog 362 393 396 1151

Throw/Catch 0 545 0 545
Test Gestures 390 493 528 1411
set Box 380 377 507 1264

Total 1717 2241 1874 5832

Table 1. Number of training and test samples from HumanEva-1,
for each motion category (due to format compatibility consider-
ations, we use HumanEva’s designated validation set as our test
set). Models are trained for both separate viewpoints and for all
viewpoints together, and for some of the larger models we will
borrow samples from the test set for training (in this case we will
only test on the remaining test samples! The reason we borrow
test samples is to demonstrate the ability of fBME to build large
models, for which we wouldn’t otherwise have enough training /
labeled data available). No matter what model we report on, the
samples we test on are never used for validation or training.

We study the performance of three types of image de-
scriptors including histograms of shape contexts sampled
on human silhouettes (both internal and external contours),
histograms of SIFT features, again sampled on the silhou-
ette, and hierarchical multilevel, multi-scale hyperfeature
encodings [11] that repeatedly accumulate / average tem-
plate matches to prototypes (local histograms) across lay-
ers, instead of winner-takes-all MAX operations followed

2Notice the difference in experimental settings, subsets of the database,
and types of error function used when comparing different reports on Hu-
manEva. E.g. training/testing on the same subject or motion can lead to
lower errors although the averages over all motions are not significantly
different (contrast tables 2 and 3). For time-series, training/testing on in-
terleaved or subsampled frames of a sequence rather than on compact, sep-
arate blocks can further decrease error, but is methodologically infeasible.

by template matching to prototypes. For all descriptors the
image bounding box is obtained using the extents of the sil-
houettes computed using background subtraction based on
non-parametric models [6]. The bounding box is automati-
cally adjusted, to keep the human centered, by adding bor-
ders that maintain the 320x200 pixel aspect ratio.

For shape context features (HistoSC), edges are ex-
tracted from the silhouette image and 400 points are sam-
pled on edges. The shape context descriptor at each image
location is computed based on 15 angular bins and 8 ra-
dial bins. The SC at each of the 400 points per image are
computed every 15th image in each training sequence and
used to generate a codebook that consists of 300 clusters,
learned using k-means (hence the descriptor size is 300).
The SIFT histogram descriptor is obtained similarly with
the exception that SIFT (as opposed to shape context) de-
scriptors are sampled and computed, using 6x6 pixels per
cell, 4x4 cells. The final dimensionality is 300, again given
the codebook size resulting from clustering SIFT descrip-
tors across subsampled images from the training set. Hyper-
features are computed at 6 scales, (1.0000, 0.8333, 0.6667,
0.5000, 0.4167,0.2500) at 3 pyramid levels (level 0 has 6
scales, 1–4 scales, 2–2 scales) based on SIFT descriptor size
4x4 in each cell, 4x4 cells per block, 4 angular bins of gra-
dient orientations (0–180), unsigned. The sampling grid is
placed at every 16th pixel in the object bounding box. The
next pyramid level is generated by combining neighboring
scales and neighboring SIFT blocks, for a total of 9x3 SIFT
blocks summed to next level. The number of cluster centers
for levels (0, 1, 2) is (400, 200, 100) respectively, forming a
descriptor of size 700.

We predict 3D joint centers and construct the skeleton
using ’torsoDistal’ as root joint. All poses are preprocessed
by subtracting the root joint location from all the joint cen-
ters in every frame. The normalized pose contains 15 joint
centers (each has X, Y and Z co-ordinates) to form an out-
put dimension of 45. For prediction we use models that
do not use temporal information, run independently, at each
frame (the use of temporal priors is likely to improve per-
formance, and we currently study this). The models we use
are: Nearest Neighbor (NN), Ridge Regression (RR), BME
and fBME (see our companion Twin Gaussian Process pre-
diction method, TGP [3], for additional results). We train
a family of models based on 5828, 8734, 11653, 17470,
26209, 34966 and 106473 samples that include 3 subjects,
with different body proportions (limb lengths) and 3 view-
points, C1, C2 and C3 (see tables 3 and 5). We train models
with 10 experts for the single view data and 15 experts for
those jointly trained on all viewpoints. (These are treated
as additional monocular views–there is no voting among
multiple predictions from different viewpoints of the same
3D frame.) The performance is in the range of 10-50 mm
per joint position (see tables 2–5). Running times are re-
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Figure 3. (a,b) Test error in the best k experts for ShapeContext and SIFT features, for models trained on a dataset of 26,209 samples. This
corresponds to fBME-B10 in table 3, but notice that this is an ideal prediction that offers general intuition on the quality of experts, but
cannot be computed when the output is unknown (instead, realistically consider fBME-M5, or the less accurate fBME-B1). (c) Frequency
counts illustrate the accuracy of ranking produced by the gates on the test set, showing how many times each expert is closest to the ground
truth vs. how many times its corresponding gate function predicts it. There is a degree of error in the rankings of some experts, e.g. the 5th.
This occurs not only in testing but also in training, suggesting that split and merge methods may be useful to improve performance.

ported for a PC with 3GhZ processor and 8Gb of RAM. In
fig. 3a,b) we show the decay in the test error of the best-
k experts for different feature types and large training sets
that integrate data from all viewpoints and subjects. The
decay is fast, under 15mm when using more than the best 5
experts, suggesting that the method can be efficiently used
either standalone (fBME-B1 or fBME-M5), or as a pro-
posal mechanism for initializing more intensive search and
feedback-based algorithms (fBME-B5 or fBME-B10). The
ranking accuracy provided by the gates on the test set is
shown in fig. 3c). This is not perfect but the distribution
is consistent to the one we see in training, suggesting that
merge-and-split training methods can potentially be used to
obtain better fits. The advantage of Bound Optimization
(BO) as opposed to alternative optimization methods like
e.g. Conjugate Gradient (CG) is empirically demonstrated
in fig. 2, where, within less than 5 iterations BO achieves a
likelihood level that is not reached by CG even after 1000
steps! The gate optimization is a difficult, coupled high-
dimensional problem, which, as the plot shows, is very ill-
conditioned. Hence, first order methods have slim chances
to operate efficiently. Comparisons between fBME and a
previously proposed conditional Bayesian method [22] is
given in table 4. This shows that fBME is accurate and
more than one order of magnitude faster to train.

We conclude with fig. 4, where we show accurate quali-
tative results obtained by running fBME on the HumanEva-
1 test set. The top row shows original images, whereas the
bottom row shows the 3D reconstruction given by fBME-
M5 (best-5 weighted experts), rendered from a variety of
synthetic viewpoints (not only the one corresponding to the
camera from where the image was captured), for diversity.

4. Conclusions

We have presented a conditional Expectation Maximiza-
tion algorithm that combines several innovations based on

HistoSC Test error (mm) Training time (s)
BME [22] fBME BME [22] fBME

C1 21.1 21.2 33223.5 844.4
C2 19.2 19.0 33135.7 837.5
C3 17.7 17.8 33177.9 828.3

Table 4. Analysis of three algorithms applied to an arm model with
5 output dimensions and shape context histograms-based input de-
scriptors. BME [22] uses backward elimination for feature selec-
tion and Laplace approximation for gate fitting. fBME uses for-
ward feature selection and gate fitting based on bound optimiza-
tion. The number of training samples is 5828 for C1, and 5821 for
C2 and C3.

Training time (sec) Error (mm)
fBME 9857.3 19.013

Table 5. Training using a 106,473 sample dataset (500 input di-
mensions, one output dimension), that combines samples from
multiple views in HumanEva (real images), together with syn-
thetically rendered image data of a graphics model animated with
motion capture. The experiment is designed to show how fBME
scales–notice that HumanEva provides only around 36,000 sam-
ples of motion capture with corresponding images.

forward feature selection and bound optimization in order to
make large scale training of probabilistic sparse conditional
Bayesian Mixture of Experts models practical. The pro-
posed algorithm, referred to as fBME can accurately handle
datasets of 100,000 training datapoints and up (one order of
magnitude larger than existing methods) in time that is more
than one order of magnitude faster than existing algorithms.
Besides human pose prediction, we hope that this method
will be useful to a larger community including researchers
studying 3D reconstruction and 3D object recognition.

Future Work: We plan to explore alternative predictive
models in tandem with dimensionality reduction. We also
work on better initialization algorithms, in particular expert



Subject 1 Subject 2 Subject 3
NN RR fBME-B1 fBME-B5 fBME-M5 NN RR fBME-B1 fBME-B5 fBME-M5 NN RR fBME-M1 fBME-B5 fBME-M5

Walking 29.0 39.4 27.2 12.1 26.2 16.5 31.0 16.6 9.4 16.6 50.7 49.5 45.3 15.3 43.2
Train/Test Jog 67.9 62.2 39.6 16.1 37.0 38.2 35.1 26.6 13.7 25.5 24.3 30.8 27.6 12.3 26.8

/per Gestures 7.3 19.0 6.4 3.8 6.2 50.5 49.5 46.2 16.3 41.8 14.0 21.2 12.7 6.4 12.6
Subject Box 38.8 39.4 29.6 13.4 28.4 49.5 49.6 41.7 18.8 40.0 37.0 40.4 32.3 14.7 31.3

Throw/Catch / / / / / 64.4 50.6 45.9 17.6 42.5 / / / / /
Walking 28.9 28.7 23.2 12.2 23.0 15.5 21.4 13.7 9.0 13.7 50.5 43.9 41.4 19.2 40.3

Train/Test Jog 43.7 37.2 35.5 17.1 34.6 34.4 24.5 25.6 14.0 24.2 24.1 24.3 22.0 12.3 21.4
/per Gestures 7.3 5.8 5.9 2.6 5.6 61.9 53.3 55.1 31.6 54.9 13.7 12.5 12.6 7.6 12.4

Motion Box 28.3 27.3 25.4 10.7 24.4 48.0 38.9 37.7 17.3 37.5 36.8 36.7 30.2 13.5 29.3
Throw/Catch / / / / / 60.1 58.2 47.4 22.4 46.2 / / / / /

Table 2. fBME trained / tested per-subject and per-motion, using models based on 5 experts, and shape context feature extracted from
video camera C3 (error in mm/3D joint). ’/’ indicates that values are not available (e.g. throw and catch gestures [20, 15] for some of the
subjects). Models based on 10 experts have smaller best error, e.g. for the first row: fBME-B10: 8.9 (S1), 7.6 (S2), 11.3 (S3).

Features/ Train Test Train error(mm) Test Errors (mean absolute error in mm) Training time(s) Test time (s)
View Set Set RR fBME-B1 NN RR fBME-B1 fBME-B5 fBME-B10 fBME-Bar1 fBME-M5 RR fBME NN RR fBME-M5

5828 5832 32.6 12.3 41.6 47.3 37.6 15.1 11.2 73.2 35.0 0.2 7445.8 359.7 0.05 45.4
HistoSC/C1 8741 2919 34.8 14.7 39.4 45.7 35.2 14.7 11.1 68.4 32.9 0.3 10633.8 263.3 0.03 22.8

11660 0 35.7 16.2 / / / / / / / 0.4 13230.8 / / /
5821 5832 29.6 10.5 38.2 43.2 31.4 13.6 10.1 77.2 29.7 0.2 7385.7 353.6 0.05 46.0

HistoSC/C2 8734 2919 31.3 12.4 36.6 42.3 31.0 13.4 10.0 67.4 29.0 0.3 10485.2 267.7 0.03 22.8
11653 0 32.4 14.0 / / / / / / / 0.4 13606.9 / / /
5821 5832 30.5 10.5 36.3 42.8 30.6 13.5 10.0 66.1 29.1 0.2 7251.1 352.1 0.05 45.8

HistoSC/C3 8734 2919 32.0 12.3 39.9 42.4 31.1 13.4 10.1 66.4 29.3 0.3 10086.8 265.3 0.03 22.8
11653 0 32.9 13.6 / / / / / / / 0.4 13502.9 / / /

HistoSC/ 17470 17496 48.0 23.5 54.8 60.8 49.9 16.1 11.5 97.5 47.5 1.5 63915.9 5189.1 0.2 146.5
C1+C2+C3 26209 8757 49.4 26.8 54.9 59.2 47.0 16.0 11.4 99.3 45.0 2.1 104222.2 3884.8 0.1 72.7

34966 0 50.0 29.5 / / / / / / / 2.8 142391.8 / / /
5828 5832 40.7 20.3 56.2 51.1 43.2 17.1 12.6 79.5 40.4 0.2 7708.2 360.3 0.05 45.7

HistoSIFT/C1 8741 2919 42.1 22.7 56.7 50.3 42.8 17.2 12.7 64.1 39.7 0.3 9893.0 270.1 0.03 22.9
11660 0 42.8 24.6 / / / / / / / 0.4 12431.6 / / /
5821 5832 37.3 15.3 46.9 48.8 37.8 15.8 11.8 80.0 35.5 0.2 7713.7 357.5 0.2 45.6

HistoSIFT/C2 8734 2919 39.4 18.0 48.6 47.1 36.1 15.8 11.8 89.2 34.1 0.3 10001.1 267.8 0.1 22.8
11653 0 39.9 19.7 / / / / / / / 0.4 13174.1 / / /
5821 5832 38.0 16.1 50.2 49.1 38.6 16.1 12.0 78.6 36.3 0.2 7103.9 389.8 0.2 45.7

HistoSIFT/C3 8734 2919 39.6 18.3 49.7 48.6 37.0 15.5 11.7 86.2 35.0 0.3 10298.9 265.6 0.1 22.9
11653 0 40.4 20.1 / / / / / / / 0.4 12680.4 / / /

HistoSIFT/ 17470 17496 54.0 32.0 61.0 61.9 50.1 18.9 13.3 96.9 48.6 1.5 57144.1 5296.4 0.2 146.4
C1+C2+C3 26209 8757 54.9 34.3 60.9 59.7 48.5 18.5 13.1 88.6 47.3 2.1 81230.9 3949.6 0.1 73.3

34966 0 55.2 35.5 / / / / / / / 2.8 126992.5 / / /
5828 5832 22.7 10.0 59.0 49.3 43.9 17.9 12.6 72.9 42.6 1.1 24497.1 953.1 0.1 53.2

Hyper/C1 8741 2919 25.8 12.0 56.4 46.7 41.5 17.2 12.6 70.4 42.6 1.5 28494.6 625.6 0.1 26.9
11660 0 27.9 13.4 / / / / / / / 1.8 35187.8 / / /
5821 5832 23.1 9.8 49.2 47.4 40.5 16.2 11.7 73.3 39.2 1.1 24730.8 939.3 0.1 52.9

Hyper/C2 8734 2919 26.1 11.5 48.0 45.5 38.7 16.1 11.9 72.5 38.0 1.5 29092.9 597.9 0.1 26.3
11653 0 28.4 13.1 / / / / / / / 1.8 35360.9 / / /
5821 5832 23.9 9.9 52.3 48.0 40.1 16.5 11.8 71.2 38.7 1.1 25632.6 922.3 0.1 55.0

Hyper/C3 8734 2919 26.8 11.8 50.5 46.3 39.4 15.9 11.6 73.5 38.3 1.5 30126.7 603.7 0.1 27.7
11653 0 28.8 13.4 / / / / / / / 1.8 36146.2 / / /

Hyper/ 17470 17496 39.8 15.7 63.6 57.7 47.1 18.9 13.1 94.0 43.7 5.8 149091.9 10780.0 0.5 163.1
C1+C2+C3 26209 8757 41.9 17.8 64.0 54.7 46.9 18.4 12.9 96.1 43.2 8.1 217268.7 8041.6 0.3 83.4

34966 0 44.3 19.6 / / / / / / / 10.7 288256.6 / / /

Table 3. Evaluation of fBME on HumanEva-1 (models based on 10 experts). In the table, ’/’ show that values are not available – these
entries correspond to models trained on all data, in order to show how fBME scales. fBME-B1 is the error in the most probable expert,
fBME-B5 is the error in the best 5 experts (ideal prediction, assuming the output is known and the expert closest to the ground truth is
selected), fBME-Bar1 is the error of the expert with lowest predictive uncertainty (errorbar), hence ranking information from the gates is
not used. In this (latter) case, the performance degrades which is expectable because the model (the equivalent of a mixture of predictors
with fixed proportions) lacks the probabilistically consistent ranking necessary for conditional prediction. fBME-M5 gives the error with
respect to the weighted prediction of the 5 most probable experts (this always decreases as more experts are added but typically saturates
beyond 5). RR and NN are models based on Ridge Regression and Nearest Neighbor, respectively. Training models with 20 experts
decreases the error somewhat, but not substantially, e.g. HistoSC/C3 5821 (fBME-B10:9.0, fBME-B20: 6.5, fBME-M5: 27.1).



Figure 4. Qualitative 3d reconstruction results on the HumanEva-1 test set (original images on the top row, 3D reconstructions seen from
different viewpoints on the second row).

fitting methods based on split and merge heuristics.
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