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Abstract

Kernel descriptors [1] provide a unified way to gener-
ate rich visual feature sets by turning pixel attributes into
patch-level features, and yield impressive results on many
object recognition tasks. However, best results with ker-
nel descriptors are achieved using efficient match kernels in
conjunction with nonlinear SVMs, which makes it impracti-
cal for large-scale problems. In this paper, we propose hi-
erarchical kernel descriptors that apply kernel descriptors
recursively to form image-level features and thus provide a
conceptually simple and consistent way to generate image-
level features from pixel attributes. More importantly, hier-
archical kernel descriptors allow linear SVMs to yield state-
of-the-art accuracy while being scalable to large datasets.
They can also be naturally extended to extract features over
depth images. We evaluate hierarchical kernel descriptors
both on the CIFAR10 dataset and the new RGB-D Object
Dataset consisting of segmented RGB and depth images of
300 everyday objects.

1. Introduction
Object recognition is a fundamental and challenging

problem and is a major focus of research in computer vi-
sion, machine learning and robotics. The task is diffi-
cult partly because images are in high-dimensional space
and can change with viewpoint, while the objects them-
selves may be deformable, leading to large intra-class vari-
ation. The core of building object recognition systems is
to extract meaningful representations (features) from high-
dimensional observations such as images, videos, and 3D
point clouds. This paper aims to discover such representa-
tions using machine learning methods.

Over the past few years, there has been increasing in-
terest in feature learning for object recognition using ma-
chine learning methods. Deep belief nets (DBNs) [8, 9]
are appealing feature learning methods that can learn a hi-
erarchy of features. DBNs are trained one layer at a time
using contrastive divergence [3], where the feature learned
by the current layer becomes the data for training the next

layer. Deep belief nets have shown impressive results on
handwritten digit recognition, speech recognition and vi-
sual object recognition. Convolutional neural networks
(CNNs) [11, 13] are another example that can learn mul-
tiple layers of nonlinear features. In CNNs, the parameters
of the entire network, including a final layer for recognition,
are jointly optimized using the back-propagation algorithm.

Current state-of-the-art object recognition algorithms [7,
30] are based on local descriptors extracted from local
patches over a regular grid on an image. The most popular
and successful local descriptors are orientation histograms
including SIFT [19] and HOG [5], which are robust to mi-
nor transformations of images. Although they are very suc-
cessful, we still lack a deep understanding of what are the
design rules behind them and how they measure the simi-
larity between image patches. Recent work on kernel de-
scriptors [1] tries to answer these questions. In particular,
they show that orientation histograms are equivalent to a
certain type of match kernel over image patches. Based on
this novel view, a family of kernel descriptors are proposed,
which are able to turn pixel attributes (gradient, color, lo-
cal binary pattern, etc.) into patch-level features. Kernel
descriptors have shown higher accuracy than many state-
of-the-art algorithms on standard object recognition bench-
marks [1].

While kernel descriptors are great for visual object
recognition, in the second stage, efficient match kernels and
expensive nonlinear SVMs with Laplacian kernels are nec-
essary for yielding good performance. Motivated by the
recent work on deep belief nets and convolutional neural
networks, in this work we extend kernel descriptors to hi-
erarchical kernel descriptors that apply kernel descriptors
recursively to aggregate lower level features into higher
level features, layer by layer (see Fig. 1). Hierarchical ker-
nel descriptors provide a conceptually simple and consis-
tent way to generate rich features from various pixel at-
tributes of RGB and depth images. Experiments on both
CIFAR10 and the RGB-D Object Dataset (available at
http://www.cs.washington.edu/rgbd-dataset) show that hi-
erarchical kernel descriptors outperform kernel descriptors
and many state-of-the-art algorithms including deep belief
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nets, convolutional neural networks, and local coordinate
coding with carefully tuned SIFT features. In addition, the
feature learning framework has been applied to develop an
RGB-D (Kinect style) camera based object-aware situated
interactive system (OASIS) that was successfully shown
live at the Consumer Electronics Show (CES) 2011 (see
http://www.cs.washington.edu/rgbd-dataset/demos.html).

1.1. Related Work

This research focuses on hierarchical feature learning
and its application to object recognition. In the past few
years, a growing amount of research on object recognition
has focused on learning rich features using unsupervised
learning, hierarchical architectures, and their combination.

Deep belief nets [8] learn the weights in multiple lay-
ers by greedily training each layer separately using unsu-
pervised algorithms and provide a way to automatically
build a hierarchy of features. The learned weights are then
used to initialize multi-layer feedback networks that fur-
ther adjust the weights using the back-propagation algo-
rithm. Convolutional deep belief nets [18] have been shown
to yield competitive performance in visual object recogni-
tion. Very recently, factorized third-order restricted Boltz-
mann machine [25] (mcRBM) have been introduced to cap-
ture high order dependencies of images. The model con-
sists of two sets of hidden units, one representing the pixel
intensities, and the other representing pairwise dependen-
cies between pixel intensities. The binary features from
mcRBM can then be fed as input to standard binary deep be-
lief nets to yield hierarchical models of natural images with
many layers of non-linear features. Convolutional Neural
Networks [29] is another example of trainable hierarchical
feed-forward models. CNNs have been successfully applied
to a wide range of applications including character recogni-
tion, pose estimation, face detection, and recently generic
object recognition.

Sparse coding [21] is a traditional method for feature
learning. Recent work has focused on learning sparse rep-
resentations for local features such as raw image patches
and SIFT descriptors [19]. Raina et al. [17] used sparse
coding to construct image-level features and showed that
sparse representations outperform conventional represen-
tations, i.e. raw image patches. Yang et al. [30] pro-
posed a spatial pyramid sparse coding model that learns
sparse representations over SIFT features. In conjunction
with max pooling, their approach achieves state-of-the-art
performance on several standard object recognition tasks.
Multi-layer feedback networks were proposed to speed up
sparse coding at the test stage [11]. Yu et al. recently
introduced local coordinate coding [32] and its improved
version [27, 31], which quickly computes sparse represen-
tations based on nearest neighbors and can model manifold
geometric structures in high dimensions.

Hua et al. [10] learned a linear transformation for SIFT
using linear discriminant analysis and showed better re-
sults with lower dimensionality than SIFT on local feature
matching problems. Philbin et al. [22] learned a non-linear
transformation with deep networks by minimizing margin-
based cost functions and presented impressive results on ob-
ject retrieval tasks.

Though multilayer kernel machines [28] are able to ex-
tract features recursively, they use a very different family
of kernel functions from our hierarchical kernel descrip-
tors. The most relevant work is kernel descriptors [1],
which learns patch-level features by transforming pixel at-
tributes using match kernels. However, they use spatial
pyramid efficient match kernels (EMK) [2] to create image-
level features by applying projections in kernel space or ran-
dom Fourier transformations to patch-level features. While
the work on efficient match kernels is appealing, nonlinear
SVMs with Laplacian kernels are required to obtain good
accuracy [1]. In this paper, we present a consistent, con-
ceptually simple way to construct image-level features by
recursively using kernel descriptors. The resulting repre-
sentations, called hierarchical kernel descriptors, combined
with linear SVMs outperform many state-of-the-art algo-
rithms.

2. Hierarchial Kernel Descriptors

Kernel descriptors [1] highlight the kernel view of orien-
tation histograms, such as SIFT and HOG, and show that
they are a particular type of match kernels over patches.
This novel view suggests a unified framework for turning
pixel attributes (gradient, color, local binary pattern, etc.)
into patch-level features: (1) design match kernels using
pixel attributes; (2) learn compact basis vectors using kernel
principal component analysis (KPCA); (3) construct ker-
nel descriptors by projecting the infinite-dimensional fea-
ture vectors to the learned basis vectors.

The key idea of this work is that we can apply the kernel
descriptor framework not only over sets of pixels (patches),
but also sets of kernel descriptors. Hierarchical kernel de-
scriptors aggregate spatially nearby patch-level features to
form higher level features by using kernel descriptors recur-
sively, as shown in Fig. 1. This procedure can be repeated
until we reach the final image-level features.

2.1. Kernel Descriptors

Patch-level features are critical for many computer vi-
sion tasks. Orientation histograms like SIFT and HOG are
popular patch-level features for object recognition. Kernel
descriptors include SIFT and HOG as special cases, and
provide a principled way to generate rich patch-level fea-
tures from various pixel attributes.

The gradient match kernel, Kgrad, is based on the pixel
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Figure 1. Hierarchical Kernel Descriptors. In the first layer, pixel
attributes are aggregated into patch-level features. In the second
layer, patch-level features are turned into aggregated patch-level
features. In the final layer, aggregated patch-level features are
converted into image-level features. Kernel descriptors are used
in every layer.

gradient attribute

Kgrad(P,Q) =
∑
z∈P

∑
z′∈Q

m̃zm̃z′ko(θ̃z, θ̃z′)kp(z, z′) (1)

where P and Q are patches from two different images, and
z denotes the 2D position of a pixel in an image patch (nor-
malized to [0, 1]).

Let θz , mz be the orientation and magnitude of the im-
age gradient at a pixel z. The normalized linear kernel
m̃zm̃z′ weights the contribution of each gradient where
m̃z = mz/

√∑
z∈P m2

z + εg and εg is a small posi-
tive constant; the position Gaussian kernel kp(z, z′) =
exp(−γp‖z − z′‖2) = φp(z)>φp(z′) measures how
close two pixels are spatially; the orientation kernel
ko(θ̃z, θ̃z′) = exp(−γo‖θ̃z − θ̃z′‖2) = φo(θ̃z)>φo(θ̃z′)
computes the similarity of gradient orientations where θ̃z =
[sin(θz) cos(θz)].

The color kernel descriptor Kcol is based on the pixel
intensity attribute

Kcol(P,Q) =
∑
z∈P

∑
z′∈Q

kc(cz, cz′)kp(z, z′) (2)

where cz is the pixel color at position z (intensity for gray
images and RGB values for color images) and kc(cz, cz′) =
exp(−γc‖cz − cz′‖2) is a Gaussian kernel.

The shape kernel descriptor, Kshape, is based on the local
binary pattern attribute [20]:

Kshape(P,Q) =
∑
z∈P

∑
z′∈Q

s̃z s̃z′kb(bz, bz′)kp(z, z′) (3)

where s̃z = sz/
√∑

z∈P s2
z + εs, sz is the standard devia-

tion of pixel values in the 3 × 3 local window around z, εs

a small constant, bz is a binary column vector that binarizes
the pixel value differences in the 3×3 local window around
z, and kb(bz, bz′) = exp(−γb‖bz − bz′‖2) is a Gaussian
kernel.

Match kernels are computationally expensive when im-
age patches are large [2]. Kernel descriptors provide a way
to extract compact low-dimensional features from match
kernels: (1) uniformly and densely sample sufficient basis
vectors from the support region to guarantee accurate ap-
proximation to match kernels; (2) learn compact basis vec-
tors using KPCA. Gradient kernel descriptors have the form

F t
grad(P ) =

do∑
i=1

dp∑
j=1

αt
ij

{∑
z∈P

m̃zko(θ̃z, xi)kp(z, yj)

}
(4)

where {x}do
i=1 and {y}dp

j=1 are uniformly sampled from their
support region, do and dp are the sizes of basis vectors for
the orientation and position kernel, and αt

ij are projection
coefficients computed by applying KPCA to the joint basis
vector set: {φo(x1)⊗ φp(y1), · · · , φo(xdo)⊗ φp(ydp)} (⊗
is Kronecker product).

Gradient, color and shape kernel descriptors are strong in
their own right and complement one another. Their combi-
nation turns out to be always (much) better than the best in-
dividual feature. Kernel descriptors are able to generate rich
visual feature sets by turning various pixel attributes into
patch-level features, and are superior to the current state-
of-the-art recognition algorithms on many standard visual
object recognition datasets [1].

2.2. Kernel Descriptors over Kernel Descriptors

The match kernels used to aggregate patch-level features
have similar structure to those used to aggregate pixel at-
tributes:

K(P ,Q) =
∑
A∈P

∑
A′∈Q

W̃AW̃A′kF (FA, FA′)kC(CA, CA′)

(5)
where A and A′ denote image patches, and P and Q are sets
of image patches.

The patch position Gaussian kernel kC(CA, CA′) =
exp(−γC‖CA − CA′‖2) = φC(CA)>φC(CA′) describes
the spatial relationship between two patches, where CA is
the center position of patch A (normalized to [0, 1]). The
patch Gaussian kernel kF (FA, FA′) = exp(−γF ‖FA −
FA′‖2) = φF (FA)>φF (FA′) measures the similarity of
two patch-level features, where FA are gradient, shape or
color kernel descriptors in our case. The linear kernel
W̃AW̃A′ weights the contribution of each patch-level fea-

ture where W̃A = WA/
√∑

A∈P W 2
A + εh and εh is a

small positive constant. WA is the average of gradient mag-
nitudes for the gradient kernel descriptor, the average of
standard deviations for the shape kernel descriptor and is
always 1 for the color kernel descriptor.

Note that although efficient match kernels [1] used match
kernels to aggregate patch-level features, they don’t con-
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sider spatial information in match kernels and so spatial
pyramid is required to integrate spatial information. In addi-
tion, they also do not weight the contribution of each patch,
which can be suboptimal. The novel joint match kernels (5)
provide a way to integrate patch-level features, patch varia-
tion, and spatial information jointly.

Evaluating match kernels (5) is expensive. Both for com-
putational efficiency and for representational convenience,
we again extract compact low-dimensional features from
(5) using the idea from kernel descriptors.

The inner product representation of two Gaussian ker-
nels is given by

kF (FA, FA′)kC(CA, CA′) =

= [φF (FA)⊗ φC(CA)]>[φF (FA′)⊗ φC(CA′)] (6)

Following [1], we learn compact features by projecting the
infinite-dimensional vector φF (FA) ⊗ φC(CA) to a set of
basis vectors. Since CA is a two-dimensional vector, we
can generate the set {φC(X1), · · · , φC(XdC

)} of basis vec-
tors by sampling X on 5 × 5 regular grids (dC = 25).
However, patch-level features FA are in high-dimensional
space and it is infeasible to sample them on dense and uni-
form grids. Instead, we cluster patch-level features from
training images using K-means, similar to the bag of vi-
sual words method, and take the resulting centers as the set
{φF (Y1), · · · , φF (YdF

)} of basis vectors.
The dimensionality of the second layer kernel descrip-

tors is the total number of joint basis vectors {φF (Y1) ⊗
φC(X1), · · · , φF (YdF

)⊗φC(XdC
)}. If 5000 basis vectors

are generated from patch-level features, the dimensional-
ity of the second layer kernel descriptors is 5000 × 25 =
125, 000. To obtain the second layer kernel descriptors of
reasonable size, we can reduce the number of basis vectors
using KPCA. KPCA finds the linear combination of basis
vectors that best preserves variance of the original data. The
first kernel principal component can be computed by maxi-
mizing the variance of projected data with the normalization
condition β>β:

[HF ⊗HCβ]>[HF ⊗HCβ]
β>β

=
β>KF ⊗KCβ

β>β
(7)

where HF = [φF (Y1), · · · , φF (YdF
)] and HC =

[φC(X1), · · · , φC(XdC
)]. The optimal β equals to the

eigenvector having the largest eigenvalue:

KF ⊗KCβ = λβ (8)

If we consider an r-dimensional projection space, the op-
timal linear projection is defined by the r eigenvectors
β1, · · · , βr of the kernel matrix KF ⊗ KC correspond-
ing to the r largest eigenvalues λ1, · · · , λr. KPCA is

performed on the joint kernel, the product of spatial ker-
nel kC and feature kernel kF , which can be written as a
single Gaussian kernel. This procedure is optimal in the
sense of minimizing the least square approximation error.
However, it is intractable to compute the eigenvectors of a
125, 000×125, 000 matrix on a modern personal computer.
Here we propose a fast algorithm for finding the eigenvec-
tors of the Kronecker product of kernel matrices. Since ker-
nel matrices are symmetric positive definite, we have

KF ⊗KC = [U>
F SF UF ]⊗ [U>

C SCUC ]

= [UF ⊗ UC ]>[SF ⊗ SC ][UF ⊗ UC ] (9)

Eq. (9) suggests that the top r eigenvectors of KF⊗KC can
be chosen from the Kronecker product of the eigenvectors
of KF and those of KC , which significantly reduces com-
putational cost. The second layer kernel descriptors have
the form

F
t
(P ) =

dF∑
i=1

dC∑
j=1

βt
ij

∑
A∈P

W̃AkF (FA, Yi)kC(CA, Xj)


(10)

Recursively applying kernel descriptors in a similar man-
ner, we can get kernel descriptors of more layers, which
represents features at different levels.

3. Everyday Object Recognition using RGB-D
We are witnessing a new wave of sensing technolo-

gies capable of providing high quality synchronized videos
of both color and depth: the RGB-D (Kinect style) cam-
era [23]. With active sensing capabilities and the potential
for mass consumer adoption, RGB-D cameras represents an
opportunity to dramatically increase the robustness of ob-
ject recognition toward real-life recognition applications.

An interesting scenario and benchmark of RGB-D object
recognition is presented in the recent study of [15]. Their
RGB-D Object Dataset contains color and depth images of
300 physically distinct objects taken from multiple views.
The chosen objects are commonly found in home and office
environments. The RGB-D camera simultaneously records
both color and depth images at 640×480 resolution. In
other words, each ‘pixel’ in an RGB-D frame contains four
channels: red, green, blue and depth. The 3D location of
each pixel in physical space can be computed using known
sensor parameters. Unlike stereo-based cameras that com-
pute depth images using visual correspondence, the RGB-D
camera projects an infrared pattern and measures its defor-
mation. This results in much more reliable depth readings,
particularly for textureless regions (Fig. 3).

This dataset contains video sequences of each object as
it is spun around on a turntable at constant speed. The cam-
era is placed about one meter from the turntable. Data was
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Figure 2. Sample objects from the RGB-D Object Dataset. Each object shown here comes from a different category.

Figure 3. RGB and Depth image captured by an RGB-D camera.
The black pixels in the right image are missing depth values.

recorded with the camera mounted at three different heights
relative to the turntable, giving viewing angles of approxi-
mately 30, 45 and 60 degrees with the horizon. One revolu-
tion of each object was recorded at each height. Each video
sequence is recorded at 20 Hz and contains around 250
frames, giving a total of 250,000 RGB + Depth frames. A
combination of visual and depth cues (Mixture-of-Gaussian
fitting on RGB, RANSAC plane fitting on depth) produces
a segmentation for each frame separating the object of in-
terest from the background. The objects are organized into
a hierarchy taken from WordNet hypernym/hyponym rela-
tions and is a subset of the categories in ImageNet [6]. Each
of the 300 objects in the dataset belong to one of 51 cate-
gories.

Our hierarchical kernel descriptors, being a generic ap-
proach based on kernels, has no trouble generalizing from
color images to depth images. Treating a depth image as a
grayscale image, i.e. using depth values as intensity, gra-
dient and shape kernel descriptors can be directly extracted
and they capture edge and shape information in the depth

channel. However, color kernel descriptors extracted over
the raw depth image does not have any significant mean-
ing. Instead, we make the observation that the distance d of
an object from the camera is inversely proportional to the
square root of its area s in RGB images. For a given object,
d
√

s is approximately constant. Since we have the segmen-
tation of objects, we can represent s using the number of
pixels belonging to the object mask. Finally, we multiply
depth values by

√
s before extracting color kernel descrip-

tors over this normalized depth image. This yields a feature
that is sensitive to the physical size of the object.

In the experiments section, we will compare in de-
tail the performance of our hierarchical kernel descrip-
tors on RGB-D object recognition to that in [15]. Our
approach consistently outperforms the state of the art in
[15]. In particular, our hierarchical kernel descriptors
on the depth image perform much better than the com-
bination of depth features (including spin images) used
in [15], increasing the depth-only object category recog-
nition from 53.1% (linear SVMs) and 64.7% (nonlinear
SVMs) to 75.7% (hierarchical kernel descriptors and lin-
ear SVMs). Moreover, our depth features served as the
backbone in the object-aware situated interactive system
that was successfully demonstrated at the Consumer Elec-
tronics Show 2011 despite adverse lighting conditions (see
http://www.cs.washington.edu/rgbd-dataset/demos.html).

4. Experiments
In this section, we evaluate hierarchical kernel descrip-

tors on CIFAR10 and the RGB-D Object Dataset. We also
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Features KDES [1] HKDES (this work)
Color 53.9 63.4
Shape 68.2 69.4

Gradient 66.3 71.2
Combination 76.0 80.0

Table 1. Comparison of kernel descriptors (KDES) and hierarchi-
cal kernel descriptors (HKDES) on CIFAR10.

provide extensive comparisons with current state-of-the-art
algorithms in terms of accuracy.

In all experiments we use the same parameter settings
as the original kernel descriptors for the first layer of hi-
erarchical kernel descriptors. For SIFT as well as gradi-
ent and shape kernel descriptors, all images are transformed
into grayscale ([0, 1]). Image intensity and RGB values are
normalized to [0, 1]. Like HOG [5], we compute gradients
using the mask [−1, 0, 1] for gradient kernel descriptors.
We also evaluate the performance of the combination of the
three hierarchical kernel descriptors by concatenating the
image-level feature vectors. Our experiments suggest that
this combination always improves accuracy.

4.1. CIFAR10

CIFAR10 is a subset of the 80 million tiny images
dataset [26, 14]. These images are downsampled to 32× 32
pixels. The training set contains 5,000 images per category,
while the test set contains 1,000 images per category.

Due to the tiny image size, we use two-layer hierarchical
kernel descriptors to obtain image-level features. We keep
the first layer the same as kernel descriptors. Kernel de-
scriptors are extracted over 8× 8 image patches over dense
regular grids with a spacing of 2 pixels. We split the whole
training set into 10,000/40,000 training/validation set, and
optimize the kernel parameters of the second layer kernel
descriptors on the validation set using grid search. Fi-
nally, we train linear SVMs on the full training set using
the optimized kernel parameter setting. Our hierarchical
model can handle large numbers of basis vectors. We tried
both 1000 and 5000 basis vectors for the patch-level Gaus-
sian kernel kF , and found that a larger number of visual
words is slightly better (0.5% to 1% improvement depend-
ing on the type of kernel descriptor). In the second layer,
we use 1000 basis vector, enforce KPCA to keep 97% of
the energy for all kernel descriptors, and produce roughly
6000-dimensional image-level features. Note that the sec-
ond layer of hierarchical kernel descriptors are image-level
features, and should be compared to that of image-level fea-
tures formed by EMK, rather than that of kernel descriptors
over image patches. The dimensionality of EMK features
[1] in is 14000, higher than that of hierarchical kernel de-
scriptors.

We compare kernel descriptors and hierarchical kernel

Method Accuracy
Logistic regression [25] 36.0

Support Vector Machines [1] 39.5
GIST [25] 54.7
SIFT [1] 65.6

fine-tuning GRBM [24] 64.8
GRBM two layers [24] 56.6

mcRBM [25] 68.3
mcRBM-DBN [25] 71.0

Tiled CNNs [16] 73.1
improved LCC [31] 74.5

KDES + EMK + linear SVMs [1] 76.0
Convolutional RBM [4] 78.9

K-means (Triangle, 4k features) [4] 79.6
HKDES + linear SVMs (this work) 80.0

Table 2. Comparison of state-of-the-art algorithms on CIFAR10.

descriptors in Table 1. As we see, hierarchical kernel de-
scriptors consistently outperform kernel descriptors. The
shape hierarchical kernel descriptor is slightly better than
the shape kernel descriptor. The other two hierarchical ker-
nel descriptors are much better than their counterparts: gra-
dient hierarchical kernel descriptor is about 5 percent higher
than gradient kernel descriptor and color hierarchical kernel
descriptor is 10 percent better than color kernel descriptor.
Finally, the combination of all three hierarchical kernel de-
scriptors outperform the combination of all three kernel de-
scriptors by 4 percent. We were not able to run nonlinear
SVMs with Laplacian kernels on the scale of this dataset
in reasonable time, given the high dimensionality of image-
level features. Instead, we make comparisons on a subset of
5,000 training images and our experiments suggest that non-
linear SVMs have similar performance with linear SVMs
when hierarchical kernel descriptors are used.

We compare hierarchical kernel descriptors with the cur-
rent state-of-the-art feature learning algorithms in Table 2.
Deep belief nets and sparse coding have been extensively
evaluated on this dataset [25, 31]. mcRBM can model pixel
intensities and pairwise dependencies between them jointly.
Factorized third-order restricted Boltzmann machine, fol-
lowed by deep belief nets, has an accuracy of 71.0%. Tiled
CNNs has the best accuracy among deep networks. The
improved LCC extends the original local coordinate coding
by including local tangent directions and is able to integrate
geometric information. As we have seen, sophisticated fea-
ture extraction can significantly boost accuracy and is much
better than using raw pixel features. SIFT features have
an accuracy of 65.2% and works reasonably even on tiny
images. The combination of three hierarchical kernel de-
scriptors has an accuracy of 80.0%, higher than all other
competing techniques; its accuracy is 14.4 percent higher
than SIFT, 9.0 percent higher than mcRBM combined with
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DBNs, and 5.5 percent higher than the improved LCC. Hi-
erarchical kernel descriptors slightly outperform the very
recent work: the convolutional RBM and the triangle K-
means with 4000 centers [4].

4.2. RGB-D Object Dataset

We evaluated hierarchical kernel descriptors on the
RGB-D Object Dataset. The goal of this experiment is to:
1) verify that hierarchical kernel descriptors work well for
both RGB and depth images; 2) test whether using depth in-
formation can improve object recognition. We subsampled
the turntable video data by taking every fifth frame, giving
around 41,877 RGB-depth image pairs. To the best of our
knowledge, the RGB-D Object Dataset presented here is the
largest multi-view object dataset where both RGB and depth
images are provided for each view.

We use two-layer hierarchical kernel descriptors to con-
struct image-level features. We keep the first layer the
same as kernel descriptors and tune the kernel parameters
of the second layer kernel descriptors by cross validation
optimization. We extract the first layer of kernel descrip-
tors over 16× 16 image patches in dense regular grids with
spacing of 8 pixels. In the second layer, we use 1000 basis
vectors for the patch-level Gaussian kernel kF , enforce that
KPCA keep 97% of the energy for all kernel descriptors
as mentioned in Section 4.1, and produce roughly 3000-
dimensional image-level features. Finally, we train linear
SVMs on the training set and apply them on the test set.
We also tried three layer kernel descriptors, but they gave
similar performance to two-layer ones.

As in [15], we distinguish between two levels of object
recognition: instance recognition and category recognition.
Instance recognition is recognizing distinct objects, for ex-
ample a coffee mug with a particular appearance and shape.
Category recognition is determining the category name of
an object (e.g. coffee mug). One category usually contains
many different object instances.

To test the generalization ability of our approaches, for
category recognition we train models on a set of objects
and at test time present to the system objects that were not
present in the training set [15]. At each trial, we randomly
leave one object out from each category for testing and train
classifiers on the remaining 300 - 51 = 249 objects. For in-
stance recognition we also follow the experimental setting
suggested by [15]: train models on the video sequences of
each object where the viewing angles are 30◦ and 60◦ with
the horizon and test them on the 45◦ video sequence.

For category recognition, the average accuracy over 10
random train/test splits is reported in the second column of
Table 3. For instance recognition, the accuracy on the test
set is reported in the third column of Table 3. As we ex-
pect, the combination of hierarchical kernel descriptors is
much better than any single descriptor. The underlying rea-

Method Category Instance
Color HKDES (RGB) 60.1±2.1 58.4
Shape HKDES (RGB) 72.6±1.9 74.6

Gradient HKDES (RGB) 70.1±2.9 75.9
Combination of HKDES (RGB) 76.1±2.2 79.3

Color HKDES (depth) 61.8±2.4 28.8
Shape HKDES (depth) 65.8±1.8 36.7

Gradient HKDES (depth) 70.8±2.7 39.3
Combination of HKDES (depth) 75.7±2.6 46.8

Combination of all HKDES 84.1±2.2 82.4

Table 3. Comparisons on the RGB-D Object Dataset. RGB de-
notes features over RGB images and depth denotes features over
depth images.

Approaches Category Instance
Linear SVMs [15] 81.9±2.8 73.9

Nonlinear SVMs [15] 83.8±3.5 74.8
Random Forest [15] 79.6±4.0 73.1

Combination of all HKDES 84.1±2.2 82.4

Table 4. Comparisons to existing recognition approaches using
a combination of depth features and image features. Nonlinear
SVMs use Gaussian kernel.

son is that each depth descriptor captures different informa-
tion and the weights learned by linear SVMs using super-
vised information can automatically balance the importance
of each descriptor across objects.

In Table 4, we compare hierarchical kernel descriptors
with the rich feature set used in [15], where SIFT, color and
textons were extracted from RGB images, and 3-D bound-
ing boxes and spin images [12] over depth images. Hier-
archical kernel descriptors are slightly better than this rich
feature set for category recognition, and much better for in-
stance recognition.

It is worth noting that, using depth alone, we improve
the category recognition accuracy in [15] from 53.1% (lin-
ear SVMs) to 75.7% (hierarchical kernel descriptors and
linear SVMs). This shows the power of our hierarchical
kernel descriptor formulation when being applied to a non-
conventional domain. The depth-alone results are meaning-
ful for many scenarios where color images are not used for
privacy or robustness reasons.

As a comparison, we also extracted SIFT features on
both RGB and depth images and trained linear SVMs over
image-level features formed by spatial pyramid EMK. The
resulting classifier has an accuracy of 71.9% for category
recognition, much lower than the result of the combination
of hierarchical kernel descriptors (84.2%). This is not sur-
prising since SIFT fails to capture shape and object size
information. Nevertheless, hierarchical kernel descriptors
provide a unified way to generate rich feature sets over both
RGB and depth images, giving significantly better accuracy.
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5. Conclusion

We have proposed hierarchical kernel descriptors for ex-
tracting image features layer by layer. Our approach is
based on the observation that kernel descriptors can be re-
cursively used to produce features at different levels. We
have compared hierarchical kernel descriptors to current
state-of-the-art algorithms and shown that our hierarchical
kernel descriptors have the best accuracy on CIFAR10, a
large scale visual object recognition dataset to date. In ad-
dition, we also evaluated our hierarchical kernel descriptors
on a large RGB-D dataset and demonstrated their ability to
generate rich feature set from multiple sensor modalities,
which is critical for boosting accuracy. In the future, we
plan to investigate deep hierarchies of kernel descriptors to
see whether more layers are helpful for object recognition.
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