
Expert Systems with Applications 36 (2009) 3982–3989
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Adaptive spherical Gaussian kernel in sparse Bayesian learning framework
for nonlinear regression

Jin Yuan a,d, Liefeng Bo b, Kesheng Wang c,*, Tao Yu a

a CIMS and Robot Center, Shanghai University, 200072 Shanghai, China
b Institute of Intelligent Information Processing, Xidian University, 710071 Xi’an, China
c Department of Production and Quality Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
d School of Mechanical and Electronic Engineering, Shandong Agricultural University, 271018 Tai’an, China

a r t i c l e i n f o
Keywords:
Relevance vector machine (RVM)
Gaussian kernel function
Regression
Gradient descent algorithm
Bayesian evidence
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.02.055

* Corresponding author.
E-mail addresses: jinyuan72@yahoo.cn (J. Yu

(K. Wang).
a b s t r a c t

Kernel based machine learning techniques have been widely used to tackle problems of function approx-
imation and regression estimation. Relevance vector machine (RVM) has state of the art performance in
sparse regression. As a popular and competent kernel function in machine learning, conventional Gauss-
ian kernel has unified kernel width with each of basis functions, which make impliedly a basic assump-
tion: the response is represented below certain frequency and the noise is represented above such certain
frequency. However, in many case, this assumption does not hold. To overcome this limitation, a novel
adaptive spherical Gaussian kernel is utilized for nonlinear regression, and the stagewise optimization
algorithm for maximizing Bayesian evidence in sparse Bayesian learning framework is proposed for
model selection. Extensive empirical study, on two artificial datasets and two real-world benchmark
datasets, shows its effectiveness and flexibility of model on representing regression problem with higher
levels of sparsity and better performance than classical RVM. The attractive ability of this approach is to
automatically choose the right kernel widths locally fitting RVs from the training dataset, which could
keep right level smoothing at each scale of signal.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, under the statistical learning theory (Vapnik, 1998),
kernel method has been widely used to tackle problems of function
approximation and regression estimation. Some popular kernel
regressions are the support vector machine (SVM) (Vapnik,
1998), Gaussian process (GP) (Williams & Rasmussen, 1996), rele-
vance vector machine (RVM) (Tipping, 2000). The SVM was pro-
posed for a regression estimation minimizing the norm of weight
and loss function, which were developed originally for classifica-
tion (Vapnik, 1998). SVM has delivered good performance in vari-
ous applications. Gaussian process regression (GPR) is a Bayesian
approach which assumes that target function is Gaussian process
prior and using Bayesian inference acquires the prediction of un-
seen data (Rasmussen & Williams, 2006).

However, the SVM has a number of the significant and practical
limitations (Tipping, 2001), for example, predictions are not prob-
abilistic and the kernel function must satisfy Mercer’s condition;
that is, it must be a positive definite continuous symmetric func-
tion. It is also necessary to estimate the error/margin tradeoff
ll rights reserved.
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parameter C (Smola & Schölkopf, 2004). GPR also is a probabilistic
approach but sparse solution, the predictive distribution can be
interpreted as a linear combination of N kernel functions, where
N refers to the number of train data.

Tipping (2001) proposed a promising relevance vector machine,
which has shown a comparable generalization performance but
rather sparse solution than SVM. Although some approaches ex-
ploit the sparsity of SVM Smola and Schölkopf (2000) and the spar-
sity of GPR (Bo, Wang, & Jiao, 2006b; Csato & Opper, 2002), RVM is
a general Bayesian learning framework of kernel method for
obtaining state of the art sparse solutions to regression and classi-
fication tasks, which lead to significant reduction in the expense of
computational complexity of the decision function and memory
consumption of reconstructed predictive model, thereby making
it more suitable for some real time applications (Agarwal & Triggs,
2004; Williams, Blake, & Cipolla, 2005). Note that RVM infers
hyperparameters effectively by maximizing the marginal likeli-
hood instead of time-consuming cross validation for model selec-
tion. In addition, the number of support vectors is sensitive to
given error bound and grows linearly with the size of the training
set, while the number of relevance vectors of RVM keeps sparse-
ness and stability after the relevance vectors have ability to de-
scribe the distribution of the problem (Yuan, Wang, Yu, & Fang,
2007).
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Fig. 1. Noisy Sinc RVM regression and weighted of Gaussian kernel basis function
with global kernel width ‘ ¼ 3.
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The choice of an appropriate kernel function is critical in order
to obtain good generalization performance. Gaussian kernel is a
very popular and competent kernel function in machine learning.
In fact, Gaussian kernel is a local kernel which just responses to
near neighbor of input variables and its local characteristic can
be regarded as a multidimensional filter. Conventional Gaussian
kernel k0 (2) has unified kernel width with each basis function,
which makes impliedly, in signal processing perspective, a basic
assumption: the response is represented below certain frequency
and the noise is represented above such certain frequency. How-
ever, in many case, this assumption does not hold. Under this
assumption, for the signal contained large range of frequencies,
the regression would lead to severe overfitting or oversmoothing
even both at the same time (Fig. 3). Schmolck and Everson
(2007) present an enforcing sparsity constraints scheme to control
sparsity by incorporating a flexible noise-dependent smoothness
prior into RVM. In this paper, the adaptive kernel width of Gauss-
ian kernel k2 (4) is utilized to cure the problem in such situation by
tuning the spherical Gaussian kernel width to fit the local signal in
different resolution scale.

To overcome this limitation, this paper combines the two para-
digms: the adaptive kernel width of Gaussian kernels and sparse
RVM learning, and presents an adaptive Gaussian kernel under
Bayesian learning framework for relevance vector machines
regression. This approach also could be adapted to classification,
but this paper emphasizes on regression problem.

The rest of this paper is organized as follows: Section 2 analyzes
the different type Gaussian kernel in kernel methods. The regres-
sion model of RVM is introduced concisely in Section 3. Section 4
describes the stagewise optimization of marginal likelihood maxi-
mization to infer hyperparameters and tune the adaptive kernel
width of Gaussian kernel. And the empirical study on simulation
experiments and discussion are presented in Section 5. The conclu-
sion is drawn finally.

2. Gaussian kernel functions in kernel methods

Kernel approaches control the regression model with loss func-
tion, kernel function, and additional capacity or complexity con-
trol. The kernel function is used to construct a nonlinear
response hyper-surface on the input space. In statistical method,
kernel function offers an alternative solution by mapping data into
high dimensional feature space to increase computational power
(Muller, Ratsch, & Scholkopf, 2001). Typically, a regression model
would be the linearly-weighted sum of kernel functions:

yðXÞ ¼
XM

m¼1

xmkðXm;XÞ ð1Þ

where yðXÞ is an estimation at unseen data X, and M ð0 < M 6 NÞ is
the number of support vectors (SVs) or relevance vectors (RVs). The
kernel function kðXm;XÞ conducts the similarity measurement
between SV (or RV) Xm and vector X in input space. Note that the
kernels k must be the positive semi-definite kernel.

Generally, in the machine learning practice, using Gaussian ker-
nel, also known as radial basis function (RBF) kernel, will yield bet-
ter prediction performance (Smola & Schölkopf, 2004). A popular
spherical Gaussian kernel k0 takes the form:

k0ðXm;XÞ ¼ exp �
XD

d¼1

kxðdÞm � xðdÞk2

2‘2

 !
ð2Þ

where ‘ is unified kernel width. Note that the width ‘ is invariant to
the features of input space RD and the SVs (or RVs), which means all
of sampling vectors and its feature using constant width. Fig. 1
shows the one dimensional Sinc toy example of regression, which
is linear combination of Gaussian kernel functions with a unified
width. Therefore, in the domain where contains both high and
low frequencies of response variation, the learning would be under-
fitting in the subdomain of high frequencies, and while the learning
would suffer from overfitting in the subdomain of low frequencies if
using a larger unified width of Gaussian kernel.

So, with extension of features, the elliptical Gaussian kernel k1

takes the form:

k1ðXm;XÞ ¼ exp �
XD

d¼1

kxðdÞm � xðdÞk2

2‘2
d

 !
ð3Þ

where ‘dð0 < d < DÞ is the feature scaling factor. Note that the
width is variant to features of the input space RD but not to the
number of SVs (or RVs) M, which used in Automatic Relevance
Determination (ARD) (Rasmussen & Williams, 2006; Tipping,
2001) or feature scaling methods (Bo, Wang, & Jiao, 2006a; Chap-
elle, Vapnik, Bousquet, & Mukherjee, 2002). If some features are
unimportant or irrelevant for regression, the associated feature
scaling factor will be small; otherwise it will be large.

Sequentially, generalizing the formulation of features to SVs (or
RVs), the adaptive spherical Gaussian kernel k2 takes the form:

k2ðXm;XÞ ¼ exp �
XD

d¼1

kxðdÞm � xðdÞk2

2‘2
m

 !
ð4Þ

where ‘mð0 < m < MÞ is the adapting width factor. Note that the
width is variant to different SVs (or RVs). In fact, this idea has been
used to construct the centers and variances of radial basis function
neural network (RBFNN), but not seen in the literatures of SVM or
RVM. If the local response varies drastically, the associated adapting
factor should be small; otherwise it should be large. Therefore, a
learning mechanism could adjust the kernels width to adapt the
variation of response. Theoretically, all the regression based on ker-
nel methods could be optional, however, it should have as sparse as
possible SVs (or RVs) to keep high efficiency of learning process,



3984 J. Yuan et al. / Expert Systems with Applications 36 (2009) 3982–3989
which RVM has state of the art sparse approach therefore leading to
predictors of choice.

An extension of adaptive elliptical Gaussian kernel k3 (5), which
has introduced both feature scaling factor and adapting width fac-
tor, has more model flexibility with SVs or RVs Set, however, there
are also much more parameters to tune, thus lead to the huge com-
putational expense and easier overfitting (Cawley & Talbot, 2007).
In general, it is inapplicable and beyond this discussion.

k3ðXm;XÞ ¼ exp �
XD

d¼1

kxðdÞm � xðdÞk2

2‘2
md

 !
ð5Þ
3. Relevance vector machine

Relevance vector machine (Tipping, 2001) is simply a special-
ization of a spares Bayesian model which utilizes the same data-
dependent kernel basis. The key feature of RVM is that the inferred
predictors are exceedingly sparse in that they contain relatively
few ‘‘relevance vectors”, as well as offering good generalization
performance. For this self-contained paper, RVM for regression is
introduced concisely here.

Supposing the mapping relationship is multiple-input-single-
out (MISO), sampled a dataset of N input vectors fXngN

n¼1 along
with N corresponding scalar-valued target ftngN

n¼1, and assuming
that the outputs are independent, identically distributed (IID)
observations. In the engineering view, for some observations could
be assumed to contain mean-zero Gaussian noise with variance
r2 : pðenjr2Þ ¼Nð0; r2Þ.

t ¼ yðX; WÞ þ e ¼ UW þ e ð6Þ

where t ¼ ½t1; . . . ; tN�T; W ¼ ½x1; . . . ;xM�T is the weight vector, and
where U is the N �M design matrix, wherein its element is
/nm ¼ kðXm;XnÞ. In fact, the sparse Bayesian learning framework
has the ability to utilize arbitrary basis functions, such as Gaussian
kernel, splines kernel, symmlet wavelet kernel, Haar wavelet kernel
(Schmolck & Everson, 2007), etc.

The classical approach to estimating t is to maximize likelihood
(7) or to minimizing ‘‘least-squares” of the measured training data-
set to estimate of W and r2, however, it would lead to over-fitting
(Tipping, 2004).

pðtjW; r2Þ ¼ ð2pr2Þ�
N
2 exp � 1

2r2 kt � UWk2
� �

ð7Þ

To control the complexity of model and avoid over-fitting, a zero-
mean Gaussian prior probability distribution is defined over every
xi with variance r�1

i , the prior of W is written as:

pðWjaÞ ¼ ð2pÞ�M=2
YM
m¼1

a1=2
m exp � amx2

m

2

� �
ð8Þ

where hyperparameters vector a ¼ ½a0; a1; a2; � � � aN�T controls how
far from zero each weight is allowed to deviate. For completion of
hierarchical prior, hyperpriors over a : pðaÞ and the inverse noise
variance r2 : pðr2Þ are specified as Gamma distributions (9), within
a; b; c; d sets to some uninformative value (e.g., a ¼ b ¼
c ¼ d ¼ 10�4).

pðaÞ ¼ Cðaja; bÞ ¼
YN
n¼0

ba

CðaÞ a
a�1e�ba

pðr2Þ ¼ Cðr2jc; dÞ ¼ dc

CðcÞ r
�2ðcþ1Þe�b=r2

ð9Þ

Consequently, using Bayes’ posterior inference, the posterior
distribution over W is also conveniently Gaussian:
pðWjt; a; r2Þ �Nðl;RÞ. Where the posterior mean l and covariance
R are as follows:
l ¼ r�2RUTt ð10Þ
R ¼ ðr�2UTUþ AÞ�1 ð11Þ
where A ¼ diagða0; a1; � � � aNÞ.

Sparse Bayesian learning can then be formulated as maximiza-
tion of hyperparameter posterior, pða; r2jtÞ / pðtja; r2ÞpðaÞpðr2Þ. In
practice, due to a; r2 > 0, to avoid adding positive constraints in
the optimization problem, their logarithm are considered, then
uniform hyperpriors are defined over a logarithmic scale, which
ultimately raises spare solutions (Quiñonero Candela, 2004). So
the MAP of hyperparameter need only to maximize the marginal
likelihood pðtja; r2Þ, known as type-II Maximum Likelihood proce-
dure. The RVM marginal likelihood, also called evidence by MacKay
(1992), is given by:

Lða; r2Þ ¼ pðtja; r2Þ ¼
Z

pðtjX;W ; r2ÞpðW jaÞdW � Nð0; CÞ

¼ �1
2

N log 2pþ log jCj þ tTC�1t
h i

ð12Þ

where the covariance is C ¼ r2I þ UA�1UT.
Obtained in this optimization process, the value of aMP and r2

MP,
as the substitution of the a and r2, the posterior mean (9) and var-
iance (10) can be computed, and then a mean final approximator at
unseen data X� could be gained with:

l� ¼ lTUðX�Þ ð13Þ

If the sparse Bayesian learning framework utilizes Gaussian kernel
k0ðXm;XÞ basis function, cross-validation on the validation set is
used to get good unified kernel width.

4. Stagewise optimization for evidence maximization with
adaptive width Gaussian kernel

The extension of classical RVM in Tipping (2001) focuses on
modify the type and number of basis function and directly opti-
mize the evidence with respect to the kernel parameters. Inspired
by this sparse Bayesian learning algorithm which used feature scal-
ing Gaussian kernel k1 for dealing with irrelevant input features,
this paper shares same basic learning framework but applying it
to the RVM with adaptive width Gaussian kernel k2.

In this section, as stagewise optimization method, we first deal
with the evidence maximization with respect to a and r2. And then
the evidence with respect to ‘ is maximized using gradient descent
algorithm in second optimization stage. Sequentially, the algorithm
is presented in Section 4.3. Finally the future direction is discussed.

4.1. Evidence maximization with respect to a and r2

Tipping (2001) suggested two type of optimization techniques
on the MAP of hyperparameter: minimization the negative log evi-
dence using gradient descent algorithm and maximization positive
log evidence using expectation maximization (EM) procedure.

In practice, gradient descent algorithm scheme minimizes the
negative log evidence L with respect to the hyperparameters
log a and log r2. Dropping the constant term, it is given by:

Lðlog a; log r2Þ ¼ 1
2

log jr2Iþ UA�1UTj þ tTðr2Iþ UA�1UTÞ�1t
h i

¼ 1
2

r�2tTðt � UlÞ þ N log r2 � log jRj � log jAj
� �

ð14Þ

The derivatives of L with respect to log a and log r2 hold:

oL

o log am
¼ �1

2
þ 1

2
amðl2

m þ RmmÞ ð15Þ

oL

o log r2 ¼
N
2
� 1

2r2 ðtr½RUTU� þ kt � Ulk2Þ ð16Þ
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Set the derivatives to zero and obtain the iterative form:

anew
m ¼ 1

l2
m þ Rmm

ð17Þ

ðr2Þnew ¼ kt � Ulk2 þ tr½RUTU�
N

ð18Þ

Another scheme, the EM algorithm proceeds a lower bound
Fðq; a;r2Þ on positive log evidence by defining a variational proba-
bility distribution qðWÞ. So in the E-stepF is maximized with respect
to qðWÞ for fixed parameters a and r2, and in M-step F is maximized
with respect to aand r2 for fixed qðWÞ. Since the posterior over W is
Gaussian, the E-step need only to compute l (10) and R (11). In M-
step, dropping the constant term, F is rewritten and maximized:Z

qðWÞ log pðt;Wja; r2ÞdW ¼ 1
2

log jAj � 1
2

tr½ARþ AllT� � N
2

� log r2 � 1
2r2 ðkt � Ulk2

þ tr½RUTU�Þ ð19Þ

Take derivatives with respect to a and r2, and set them to zero, the
result equivalent to gradient descent scheme. More detail on EM
learning for the RVM refers (Quiñonero Candela, 2004).

By introducing the quantities cm ¼ 1� amRmm, which are a mea-
sure of how ‘‘well-determined” each wm is by the train data (Mac-
Kay, 1992), the faster convergence update form holds:

anew
m ¼ cm

l2
m

ð20Þ

ðr2Þnew ¼ kt � Ulk2

N � Rmcm
ð21Þ

Fig. 2 shows the convergence rate comparison of different update
algorithm. The MacKay update form has highly effective on pruning
RVs.

4.2. Evidence maximization with respect to ‘

In practice, the negative log evidence is minimized with respect
to ‘ using gradient descent algorithm. To avoid adding positive
constraints in the optimization problem, we use parameterizations
log ‘. So this is rewritten:

arg min
log ‘

L ¼ 1
2
½log jCj þ tTC�1t�

� �
ð22Þ

where C ¼ r2Iþ UA�1UT.
According to the chain rule, the gradient of the evidence L with

respect to the kernel width of mth ðm ¼ 1;2; . . . ;MÞ RVs is first
written in the form:
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Fig. 2. Convergence rate comparison.
oL

o log ‘
¼ oL

oU
� oU
o log ‘

ð23Þ

Due to the first term in (23) is independent of the kernel function
parameters, so it follows that we need only to calculate oL

oU and
oU

o log ‘, respectively. Firstly, in the computation of matrix (Roweis,
1999), for the log determinant of a positive definite symmetric ma-
trix C, o

ox log jdetðCÞj ¼ C�1, and for the derivative of symmetric in-
verse matrix C�1; ½aTC�1b�0 ¼ �C�1abTC�1 So we have

oL

oU
¼ 1

2
o

oU
½log jCj þ tTC�1t� ¼ 1

2
ðC�1 � C�1ttTC�1tÞ oC

oU
ð24Þ

And for the symmetric matrix A, the derivative of square form:
ðXTAXÞ0 ¼ 2XTAX0, then we have

oC
oU
¼ o

oU
ðr2Iþ UA�1UTÞ ¼ 2UA�1 ð25Þ

Then substituting (25) to (24), The derivative of L with respect to U
is given by

oL

oU
¼ ðC�1 � C�1ttTC�1ÞUA�1 ð26Þ

By defining Enm ¼ oL=o/nm, the form of (26) is rewritten as a more
intuitive form (Tipping, 2001):

E ¼ r2½UR� ðt � yÞlT� ð27Þ

So for the set of Gaussian kernel functions /nm ¼ k2ðXm;XÞ, the par-
tial derivatives of L with respect to the logarithm of adaptive width
parameters ðcm ¼ 1=2‘2

mÞ:

o/nm

o log cm
¼ �

XD

d¼1

ðxðdÞm � xðdÞn Þ
2 � /nm ð28Þ

Combining Eqs. (27) and (28), we can compute the derivatives (23)
of the evidence L:

oL

o log cm
¼
XM

m¼1

XN

n¼1

XD

d¼1

�Enm/nmðxðdÞm � xðdÞn Þ
2 ð29Þ
4.3. The algorithm

The stagewise optimization of evidence maximization with re-
spect to hyperparameters, based on the classical RVM algorithm,
is described in Algorithm 1.

In the first stage, the hyperparameters a and r2 are optimized
(line 3–5) while the kernel parameter ‘ is fixed. After iterating H
cycles of the a and r2 optimization, with the fixed hyperparameters
re-estimated a and r2, the kernel parameter ‘ is optimized in sec-
ond stage (line 7–10). Because of the change of kernel parameter
and then U, thus l and R is updated (line 8) to reflect the current
state of the model.

Algorithm 1. Stagewise optimization of RVM with adaptive
width Gaussian kernel algorithm

1. Initialize a ½1=N; . . . ;1=N�T; r2  0:1� varðtÞ and ‘;
2. for step1 ¼ 1 to maximum iteration or convergence
3. Compute fl;R;Ug;
4. Re-estimate anew

i and ðr2Þnew;
5. Delete near-zero RVs;
6. If step1 mod H ¼ 0 (e.g. H=5 or 10)
7. for step2 ¼ 1 to maximum iteration (e.g. S ¼ 5 or 10) or

convergence
8. Update fl;R;Ug;
9. Using gradient descent algorithm to find a better ‘;
10. end for
11. end if
13. end for
14. Predicting for unseen data using the regressive model (13).
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Following Tipping (2001), the convergence criterion in first
stage (line 2) is set to the largest absolute change between sequen-
1 The dataset is obtained from http://www.gatsby.ucl.ac.uk/~chuwei/regression.
html.
tial iterations in log am < 10�9, and the convergence criterion in
second stage (line 7) is set to that the log-evidence L changes by
less than 10�6. In practice, we have found it is effective to prevent
premature convergence by setting limited optimization frequency
H (line 6) and maximum iteration S in second stage.

As a function of a and r2, the negative log evidence has multiple
minima (Quiñonero Candela, 2004), let alone being a function of
a; r2 and ‘, so it is intractable to converge to the global optimum
with the greedy nature and stagewise update of the optimization
technique. Therefore, the initial kernel parameter ‘ still has some
effect on regressive performance, which could be improvement
via grid research and cross-validation.

4.4. Future directions

The computational complexity of the algorithm is

#ðstep1Þ � ðN
3 þ#ðstep2Þ �M � N3=HÞ ð30Þ

where step1 and step2 refer to the maximum iteration in first stage
and second stage. Why the above algorithm works applicable with
so many hyperparameters and kernel parameters optimization? Its
mainly reason is the highly effective pruning RVs from the N to M
(typically, M � NÞ. Obviously, the bottleneck of the algorithm is
the computation of inverse operation (Cholesky decomposition) of
OðN3Þ complexity. Although empirically the type-II Maximum Like-
lihood scheme on which we base this work does not seem to be
much of an issue under most medium-size scenarios, it quickly be-
comes intractable as the number of training samples increases. In
the future, an approach based on fast RVM algorithm (Tipping &
Faul, 2003), RVM* algorithm (Quiñonero Candela, 2004) or fast gen-
eralized cross-validation algorithm (Sundararajan, Shevade, & Sat-
hiya Keerthi, 2007) is an alternative approach for larger dataset.

5. Empirical study and discussion

In order to demonstrate the effectiveness of adaptive width
Gaussian kernel k2 RVM in sparse Bayesian learning framework,
we compare its performance with those of RVM with classical
Gaussian kernel k0 in the regression experiments with 2 artificial
datasets and 2 real-world benchmark datasets. All the algorithms
are implemented in MATLAB 7.0.

5.1. Optimization implementation

For the stagewise optimization in sparse Bayesian learning
framework, a gradient-descent method is used in second stage to
search for the optimal values for the kernel parameters, and thus
one needs to choose good optimization software. We recommend
using an available optimization package to avoid the numerical
problems. Here we use the function fminunc in the optimization
toolbox of MATLAB that implements BFGS quasi-Newton algorithm
to solve medium-scale problems. The maximum number of itera-
tions allowed is set to be 10, the termination tolerance on the func-
tion value and variable value is set to be 10�5, and the cubic
polynomial line search procedure is used to find the optimal step
size.

5.2. Multiscale data set

The multiscale resolution data task is to estimate a regression of
a noisy function, given N examples ðxi; yiÞ:

yi ¼ sin
40
xi

� �
þ e ð31Þ
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where xi drawn uniformly from [1,10], and e is drawn from a Gauss-
ian distribution with mean 0 and variance r2. For the dataset, the
training set consisted of 150 samples while the test set has 200
noise-free samples. the settings of this simulation are:
S ¼ 10; H ¼ 10; r ¼ 0:1.

For comparison with this approach, Fig. 3 shows the multiscale
resolution data regression with classical RVM using Gaussian ker-
nel k0 (2), which results in severe overfitting (Fig. 3a) or oversmoo-
thing (Fig. 3c) even both at the same time (Fig. 3b), while the same
regression problem with this approach using Gaussian kernel k2 (4)
trained by this stagewise approach shows its adaptive ability in
multiscale situation in Fig. 4, which adaptively fit the response at
each scale, but not the noise, while keeping right level of smooth-
ing. The adaptive widths Gaussian kernel of RVs in Fig. 4 is shown
in Fig. 5. Note that with same initial parameter ‘ the classical RVM
approach (Fig. 4b) has more RVs than this approach (Fig. 5) in low-
frequency subdomain of response, meanwhile, in high-frequency
subdomain of response, low predictive performance with almost
same RVs.

5.3. Tipping two dimensional Sinc data set

Another toy example sampled from the function, which was
used to test the feature scaling problem in (Tipping, 2001):

yi ¼
sinðxð1Þi Þ

xð1Þi

þ 0:1xð2Þi ð32Þ

yi is corrupted by the Gaussian noise with mean 0 and variance r2,
both dimensional xi drawn uniformly from [�10, 10]. The simula-
tion is conduct by the classical RVM approach with Gaussian kernel
k0 (k0, for short) and stagewise optimization RVM approach with
Gaussian kernel k2 ðk2, for short). The comparison results are shown
in Table 1, and the settings of this simulation are:
S ¼ 10; H ¼ 10; r ¼ 0:1; The initial width set to 3. For the test set
has 200 noise-free generated samples.

From the Table 1, we can see that this approach obtained more
sparseness regression than classical RVM in all dataset size with
better predictive performance. It is reasonable for the relevance
vector kernels set using k2 with kernel widths adapted by an opti-
mization process more flexible than the kernels set using k0. Obvi-
ously, the sparseness is affected by the training dataset size. The
sparseness obtained by this approach is more obvious than the
classical RVM when the dataset distributing with high density in
the domain, such as dataset size from 15 * 15 to 30 * 30. Mean-
while, when dataset size increases to certain extent, after the RVs
have the ability to describe the nonlinear process, the number of
vectors of RVM keeps sparseness and stability. On the contrary,
when the training dataset distributes insufficient data in low
dimension input domain (e.g. dataset 8 * 8 and 10 * 10), the two ap-
proaches have almost similar sparseness. Regarding the conver-
gence and sparsity procedure, the comparison between two
approaches on 15 * 15 dataset is shown in Fig. 6. The second stage
optimization maximized the evidence with respect to ‘, shown by
the step improvement in red in left panel, furthermore, affect the
maximum evidence of whole optimization and the convergence
speed, also more sparsity in right panel.

5.4. Benchmark data set

We tested the two approaches on two real-world datasets1: the
Boston housing dataset (Harrison & Rubinfeld, 1978) and the Aba-
lone dataset (Newman & Asuncion, 2007). The Boston housing data-

http://www.gatsby.ucl.ac.uk/~chuwei/regression.html
http://www.gatsby.ucl.ac.uk/~chuwei/regression.html
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Fig. 3. Multiscale resolution data regression by classical RVM with global width (a) ‘ ¼ 0:2, (b) ‘ ¼ 0:41 and (c) ‘ ¼ 1:2.
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Fig. 4. Multiscale resolution data regression by stagewise optimized RVM with adapting width initialized ‘ ¼ 0:41, regression test error (RMS): 0.0671.
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Fig. 5. The adapting width factors corresponding to RVs with same sequence in
Fig. 4.

Table 1
Sparsity and prediction performance comparison on tipping two dimensional Sinc
data

Training dataset size Methods RMS ð10�2Þ RVs

8 * 8 Classical RVM 16.75 63
Proposed method 14.15 59

10 * 10 Classical RVM 6.35 99
Proposed method 6.21 98

15 * 15 Classical RVM 6.38 104
Proposed method 6.15 89

20 * 20 Classical RVM 5.49 115
Proposed method 5.46 90

25 * 25 Classical RVM 5.43 122
Proposed method 5.42 91

30 * 30 Classical RVM 5.36 128
Proposed method 5.32 93
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set contains 506 instances with 13 features, which split into 481 in-
stances for training and 25 for test in the experiment. The Abalone
dataset comprises 4177 patterns with eight attributes. All the pat-
terns are normalized to zero mean and unit variance coordinate-
wise, and randomly partitioned in 1000 patterns for training and
3177 patterns for test. The settings of this simulation are:
H ¼ 15; S ¼ 8; the initial width set to 5.5. The comparison results
are shown in Table 2. From the comparison, proposed approach also
obtained sparser RVs set than classical RVM with better prediction
performance.
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Fig. 6. The comparison of RVM convergence and sparsity procedure for the 15 * 15 dataset of tipping two dimensional Sinc data.

Table 2
Prediction performance and sparsity comparison on benchmark data

Dataset Methods MSE RVs

Boston housing Classical RVM 8.21959 39
Proposed method 8.05299 31

Abalone Classical RVM 0.46723 21
Proposed method 0.45220 18
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5.5. Discussion

We explore the test error (RMS) with respect to unified kernel
width on multiscale training dataset shown in Fig. 7a. The mini-
mum test error (0.0705 with kernel width 0.16, but 48 RVs) repre-
sents a learning ability of classical RVM with Gaussian kernel k0.
However, compared with the result (0.0671 and only 10 RVs in
Fig. 4), the deficiency of learning ability of classical RVM mainly be-
cause the absence of local width tuning capability in nature as a
kind of local kernel, especially in the situation of containing varied
frequency signal. So, the attractive ability of this approach is to
automatically choose the right kernel widths locally fitting RVs
from the training dataset.

However, to add the flexibility of the kernel function appears to
call for an effective way to deal with local maxima. When the train-
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Fig. 7. Prediction performance and sparsity of classical RVM on
ing dataset distributes highly sparseness in high dimension input
domain, (e.g. the Boston housing dataset), the model with many
hyperparameter incurs many local maxima. If in this situation,
the resulting in performance will be sensitive to the initialization
of kernel width.

6. Conclusions

In this paper, as a straightforward extension to the RVM, a novel
use of adaptive spherical Gaussian kernel is proposed for nonlinear
regression, and we have described the stagewise optimization
algorithm for maximizing marginal likelihood, also known as
Bayesian evidence, of the model in sparse Bayesian learning frame-
work. In the first stage, the hyperparameters a and r2 are tuned by
maximizing evidence with effective MacKay update methods,
which could quickly make the model sparseness. In the second
stage, the kernel parameters linked with RVs is adapted by gradi-
ent descent algorithm to maximize evidence. The attractive ability
of this approach is to automatically choose the right kernel widths
locally fitting RVs from the training dataset.

Compared with classical RVM with unified Gaussian kernel
width, the regression experiments, two artificial datasets and
two real-world benchmark datasets, show that adaptive spherical
Gaussian kernel RVM with stagewise optimization is effectiveness
and flexibility of model on representing regression problem with
higher performance and higher levels of sparsity. It will also be
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multiscale dataset with a range of kernel width parameter.
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interesting and easy to extend the proposed algorithm to classifica-
tion problems.
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