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Abstract. We perform unsupervised image classification based on tex-
ture features by using a novel evolutionary clustering method, named
manifold evolutionary clustering �MEC�. In MEC, the clustering problem
is considered from a combinatorial optimization viewpoint. Each indi-
vidual is a sequence of real integers representing the cluster represen-
tatives. Each datum is assigned to a cluster representative according to
a novel manifold-distance-based dissimilarity measure, which measures
the geodesic distance along the manifold. After extracting texture fea-
tures from an image, MEC determines partitioning of the feature vectors
using evolutionary search. We apply MEC to solve seven benchmark
clustering problems on artificial data sets, three artificial texture image
classification problems, and two synthetic aperture radar image classifi-
cation problems. The experimental results show that in terms of cluster
quality and robustness, MEC outperforms the K-means algorithm, a
modified K-means algorithm using the manifold-distance-based dissimi-
larity measure, and a genetic-algorithm-based clustering technique in
partitioning most of the test problems. © 2008 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.2955785�
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genetic algorithms; clustering; dissimilarity measure.
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Introduction

mage classification or segmentation based on texture fea-
ures using unsupervised approaches has been a challenging
opic. Texture is an important property of some images. A
ot of texture feature extraction methods have been devel-
ped over the past three decades. These texture features can
e divided into four major categories:1,2 statistical, geo-
etrical, model-based, and signal-processing. Among

hem, gray-level cooccurrence features, first proposed by
aralick, Shanmugam, and Dinstein,3 are among the most

ommon features used in the literature. In some images, the
ame object region may vary in appearance from image to
mage as well as within the same image. Thus, the selected
raining samples in a supervised algorithm may not be suf-
cient to include all the class variability throughout the

mage. Under these conditions, unsupervised classification
i.e., clustering� may be more effective. There are a variety
f clustering approaches that could be used to assign class
abels to the feature vectors. These approaches can be cat-
gorized into two groups:4,5 hierarchical clustering and par-
itional clustering. Partitional clustering approaches, such
s the K-means algorithm,6 partition the data set into a
pecified number of clusters by minimizing certain criteria.
herefore, they can be treated as an optimization problem.

091-3286/2008/$25.00 © 2008 SPIE
ptical Engineering 077201-
As global optimization techniques, evolutionary algorithms
�EAs� are likely to be a good choice for this task.

EAs, including genetic algorithms �GAs�, evolutionary
strategies �ESs�, evolutionary programming �EP�, etc., have
been commonly used for clustering tasks in the
literature.7–10 A variety of EA representations for clustering
solutions have been explored, such as straightforward en-
coding with each gene coding for the cluster membership
of the corresponding datum, and the locus-based adjacency
representation.10 Many researchers7–9 have chosen to use a
more indirect approach that borrows from the K-means al-
gorithm: The representation codes for the cluster center
only, and each datum is subsequently assigned to a cluster
representative according to a chosen dissimilarity measure.

The most popular dissimilarity measure is the Euclidean
distance. By using it, these evolutionary clustering methods
as well as the K-means algorithm yield good performance
on data sets with compact supersphere distributions, but
tend to fail on data sets organized in more complex and
unknown shapes, which indicates that this dissimilarity
measure is undesirable when clusters have random distribu-
tions. As a result, it is necessary to design a more flexible
dissimilarity measure for clustering.

Su and Chou11 proposed a nonmetric measure based on
the concept of point symmetry, according to which a
symmetry-based version of the K-means algorithm is given.
This algorithm assigns data points to a cluster center if they
July 2008/Vol. 47�7�1
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resent a symmetrical structure with respect to the cluster
enter. Therefore, it is suitable for clustering data sets with
lear symmetrical structure. Charalampidis12 recently de-
eloped a dissimilarity measure for directional patterns rep-
esented by rotation-variant vectors and further introduced
circular K-means algorithm to cluster vectors containing

irectional information.
In order to perform the texture classification task effec-

ively, in this study we design a novel evolutionary cluster-
ng method, named manifold evolutionary clustering
MEC�. In MEC, we adopt an indirect encoding approach,
amely, each individual is a sequence of real integer num-
ers representing the cluster representatives. Each datum is
ssigned to a cluster representative according to a novel
issimilarity measure, the geodesic distance along the
anifold. After extracting texture features from an image,
EC determines a partitioning of the feature vectors using

volutionary search. The effectiveness of MEC is validated
y comparing it with the K-means algorithm, a modified
-means algorithm using the manifold-distance-based dis-

imilarity measure,13 and the genetic-algorithm-based clus-
ering technique proposed by Maulik and Bandyopadhyay,8

n solving seven benchmark clustering problems on artifi-
ial data sets, three artificial texture image classification
roblems, and two synthetic aperture radar �SAR� image
lassification problems.

The remainder of this paper is organized as follows:
ection 2 describes the novel manifold-distance-based dis-
imilarity measure. Section 3 describes the evolutionary
lustering algorithm based on that dissimilarity measure. In
ec. 4, we summarize and evaluate the experimental re-
ults. Finally, concluding remarks are presented.

A Novel Manifold-Distance-Based Dissimilarity
Measure

meaningful measure of distance or proximity between
airs of data points plays an important role in partitional
lustering approaches. Most of the clusters can be identified
y their local or global characteristics. Through a large
mount of observation, we have found the following two
onsistency characteristics of data clustering:

1. Local consistency means that data points close in lo-
cation will have a high affinity.

2. Global consistency means that data points located in
the same manifold structure will have a high affinity.

For real-world problems, the distribution of data points
akes on a complex manifold structure, which implies that
he classical Euclidean distance metric can only reflect lo-
al consistency, and fails to describe global consistency. We
an illustrate this problem by the following example. As
hown in Fig. 1, we expect that the affinity between point a
nd point e is higher than the affinity between point a and
oint f . In other words, we are looking for a measure of
issimilarity according to which point a is closer to point e
han to point f . In terms of the Euclidean distance metric,
owever, point a is much closer to point f than to e. Hence
or complicated real-world problems, simply using the Eu-
lidean distance metric as a dissimilarity measure cannot
ully reflect the characteristics of data clustering.

Here, we want to design a novel dissimilarity measure
ptical Engineering 077201-
with the ability of reflecting both local and global consis-
tency. As an example, we can observe from the data distri-
bution in Fig. 1 that data points in the same cluster tend to
lie in the same manifold.

For our purpose, data points are taken as the nodes V of
a weighted undirected graph G= �V ,E�. Edges E= �Wij� re-
flect the affinity between each pair of data points. We ex-
pect to design a dissimilarity measure that assigns high af-
finity to two points if they can be linked by a path running
along a manifold, and low affinity if they cannot. This con-
cept of dissimilarity measure has been shown in experi-
ments to lead to significant improvement in classification
accuracy when applied to semisupervised learning.14,15 The
aim of using this kind of measure is to elongate the paths
that cross different manifolds, and simultaneously shorten
those that do not.

To formalize this intuitive notion of dissimilarity, we
need first to define a so-called manifold length of line seg-
ments. We have found that a distance measure describing
the global consistency of clustering does not always satisfy
the triangle inequality of the Euclidean metric. As shown in
Fig. 1, to describe the global consistency, it is required that
the length of a path connected by shorter edges be smaller
than that of the direct path, i.e. ab+bc+cd+de�ae. In
other words, a direct path between two points is not always
the shortest one.

Enlightened by this property, we define a manifold
length of line segment as follows.

Definition 1. The manifold length of a line segment �xi ,xj�
is defined as

L�xi,xj� � �dist�xi,xj� − 1, �1�

where dist�xi ,xj� is the Euclidean distance between xi and
xj, and ��1 is the flexing factor.

Obviously, the manifold length of a line segment pos-
sesses the property mentioned, and thus can be utilized to
describe global consistency. In addition, the manifold
length between two points can be elongated or shortened by
adjusting the flexing factor �.

According to the manifold length of line segments, we
define a new distance metric, called the manifold distance
metric, which measures the distance between a pair of
points by searching for the shortest path in the graph.

Fig. 1 An illustration of the fact that the Euclidean distance metric
can fail to reflect global consistency.
July 2008/Vol. 47�7�2
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efinition 2. Let data points be the nodes of graph G
�V ,E�, and p�Vl be a path of length l= �p�−1 connecting

he nodes p1 and p�p�, in which �pk , pk+1��E, 1�k� �p�.
et Pi,j denote the set of all paths connecting data points xi

nd xj. The manifold distance between xi and xj is defined
s

�xi,xj� � min
p�Pi,j

�
k=1

�p�−1

L�pk,pk+1� . �2�

The manifold distance satisfies the four conditions for a
istance metric, i.e., D�xi ,xj�=D�xj ,xi�; D�xi ,xj��0;
�xi ,xj��D�xi ,xk�+D�xk ,xj� for all xi ,xj ,xk; and D�xi ,xj�
0 if and only if xi=xj. As a result, the manifold distance
etric can measure the geodesic distance along the mani-

old, which results in any two points in the same manifold
eing connected by a lot of shorter edges within the mani-
old while any two points in different manifolds are con-
ected by a longer edge between manifolds, thus achieving
he aim of elongating the distances among data points in
ifferent manifolds and simultaneously shortening the dis-
ances among data points in the same manifold.

Evolutionary Clustering Based on the Manifold
Distance

n using EAs to perform clustering tasks, it is necessary to
esign the individual representation method and the heuris-
ic search operators, and formulate the objective function
or optimization.

.1 Representation and Operators
n this study, we consider the clustering problem from a
ombinatorial optimization viewpoint. Each individual is a
equence of real integer numbers representing the sequence
umbers of K cluster representatives. The length of a chro-
osome is K words, of which the first word �gene� repre-

ents the first cluster, the second represents the second clus-
er, and so on. As an illustration, let us consider the
ollowing example.

xample 1. Let the size of the data set be 100, and the
umber of clusters considered be 5. Then for the individual
6, 19, 91, 38, 64� the 6th, 19th, 91st, 38th, and 64th points
re chosen to represent the five clusters, respectively.

This representation method does not mention the data
imension. If the size of the data set is N and the number of
lusters is K, then the size of the search space is NK.

Crossover is a probabilistic process that exchanges in-
ormation between two parent individuals for generating
ffspring. In this study, we use the uniform crossover,16

ecause it is unbiased with respect to the ordering of genes
nd can generate any combination of alleles from the two
arents.10,17 An example of the operation of uniform cross-
ver on the encoding employed is the following.

xample 2. Let the two parent individuals be �6, 19, 91,
8, 64� and �3, 29, 17, 61, 6�. Randomly generate the mask
1, 0, 0, 1, 0�. Then the two offspring after crossover are �6,
ptical Engineering 077201-
29, 17, 38, 64� and �3, 19, 91, 61, 64�. In this case, the first
offspring is not �6, 29, 17, 38, 6� because the 6 in bold
would be a repetition; we keep that point unchanged.

Each individual undergoes mutation with probability pm

in the following example.

Example 3. Let the size of the data set be 100, and the
number of clusters considered be 5. Then the individual �6,
19, 91, 38, 64� can mutate to �6, 19+ ��100−19�� random
+1�, 91, 38, 64� or �6, 19− ��19−1�� random+1�, 91, 38,
64� equiprobably when the second gene is chosen to mu-
tate, where random denotes a uniformly distributed random
number in the range �0, 1�.

3.2 Objective Function

Each datum is assigned to a cluster representative accord-
ing to its manifold distance to the cluster representatives.
As an illustration, let us consider the following example.

Example 4. Let the 6th, 19th, 91st, 38th, and 64th points
represent the five clusters, respectively. For the first point,
we compute the manifold distances between it and the 6th,
19th, 91st, 38th, and 64th points. If the manifold distance
between the first point and the 38th point is the minimum
one, then the first point is assigned to the cluster repre-
sented by the 38th point. All the points are assigned in this
way.

Subsequently, the objective function is computed as fol-
lows:

Dev�C� = �
Ck�C

�
i�Ck

D�i,�k� , �3�

where C is the set of all clusters, �k is the representative of
cluster Ck, and D�i ,�k� is the manifold distance between
the ith datum of cluster Ck and �k.

3.3 Manifold Evolutionary Clustering Algorithm

In MEC, the processes of fitness computation, roulette
wheel selection with elitism,18 crossover, and mutation are
executed for a maximum number of generations Gmax. The
best individual in the last generation provides the solution
to the clustering problem. The main loop of MEC is as
follows:

Table 1 Parameter settings for MEC and GAC.

Parameter MEC GAC

Maximum number of generations 100 100

Population size 50 50

Crossover probability 0.8 0.8

Mutation probability 0.1 0.1
July 2008/Vol. 47�7�3



B

1

2

3

4

5

6
e

7

8

9

1

1

E

d
t
t
o

4

4
I
i
s
a
m
a
�
a

t
D

l
i

t
t
a
e
r
2
t
s
l
f
c
p

Gong et al.: Image texture classification using a manifold distance…

O

Algorithm 1: Manifold evolutionary clustering �MEC�.
egin

. t=0

. randomly initialize population P�t�

. assign all points to clusters as the manifold distance, and
compute the objective-function values of P�t�

. if t�Gmax

. t= t+1

. select P�t� from P�t−1� using roulette wheel selection with
litism

. crossover P�t�

. mutate P�t�

. go to step 3

0. end if

1. output the best and stop

nd

The initial population in step 2 is initialized to K ran-
omly generated real integer numbers in �1,N� where N is
he size of the data set. This process is repeated for each of
he P chromosomes in the population, where P is the size
f the population.

Experimental Study

.1 Experimental Setup
n order to validate the performance of MEC, we first apply
t to seven benchmark clustering problems on artificial data
ets. The results are compared with those of the K-means
lgorithm �KM�,6 a modified K-means algorithm using the
anifold-distance-based dissimilarity measure �DSKM�,13

nd the genetic-algorithm-based clustering technique
GAC� proposed by Maulik and Bandyopadhyay.8 In all the
lgorithms, the desired number of clusters is set in advance.

In the second experiment, we solve three artificial tex-
ure image classification problems using MEC, GAC,
SKM, and KM.
In the third experiment, we solve the classification prob-

ems of one X-band SAR image and one Ku-band SAR
mage by using MEC, GAC, DSKM, and KM.

In the image classification experiments �the second and
hird experiments�, we use the gray-level cooccurrence ma-
rix �GLCM�3 method to extract texture features from im-
ges. There are many statistics that can be determined from
ach GLCM, such as angular second moment, contrast, cor-
elation, sum of squares, entropy, and so on. Following Ref.
, in this study we chose three statistics—dissimilarity, en-
ropy, and correlation—which indicate the degree of
moothness of the texture, the homogeneity, and the corre-
ation between the gray-level pair, respectively. There are
our parameters that must be indicated in order to generate
ooccurrence data, namely, the interpixel orientation, inter-
ixel distance, number of gray levels, and window size.
ptical Engineering 077201-
Typically, the interpixel orientation is set to 0, 45, 90, or
135 deg, since those angles are easiest to implement. Short
interpixel distances have typically achieved the best suc-
cess, so an interpixel distance of 1 is used. This combina-
tion of offset and orientation has characterized SAR texture
well.2 The effect of varying the number of gray levels and
window size on GLCM statistics has been presented in
many references.2,19 In view of their analysis and fine-
tuning experiments, in this study we set the number of gray
levels at 16 and the window size at 13�13.

The parameter settings used for MEC and GAC in our
experimental study are given in Table 1. For DSKM and
KM, the maximum iterative number is set to 500, and the
stop threshold is 10−10.

In the first two experiments, the true partitioning is
known, we evaluate the performance using two external
measures, the adjusted Rand index10,20,21 and the clustering
error.13

The adjusted Rand index20 is a generalization of the
Rand index22 that takes two partitionings as the input and
counts the pairwise co-assignments of data between the two
partitioning. Given a set of N points S= �p1 , p2 , . . . , pN�,
suppose U= �u1 ,u2 , . . . ,uK� and V= �v1 ,v2 , . . . ,vK� repre-
sent two different partitions of the points in S such that
�i=1

K ui=� j=1
K v j =S and ui�ui�=v j �v j�=� for 1� i� i�

�K ,1� j� j��K. Suppose that U is the known true par-
tition, and V is a clustering result. Let a be the number of
pairs of points in the same class in U and in the same class
in V, b be the number of pairs of points in the same class in
U but not in the same class in V, c be the number of pairs
of points in the same class in V but not in the same class in
U, and d be the number of pairs of points in different
classes in both partitions. The quantities a and d can be
interpreted as agreements, and b and c as disagreements.
Then the Rand index is �a+d� / �a+b+c+d�. The Rand in-
dex lies between 0 and 1; when the two partitions agree
perfectly, the Rand index is 1.

A problem with the Rand index is that its expected value
for two random partitions does not take a constant value
�say zero�. The adjusted Rand index proposed by Hubert
and Arabie20 assumes the generalized hypergeometric dis-
tribution as the model of randomness, i.e., the partitions U
and V are picked at random so that the numbers of points in
the classes are fixed. Let nij be the number of points that
are in both class ui and class v j. Let ni· and n·j be the
numbers of points in class ui and class v j respectively. Un-
der the generalized hypergeometric model, it can be shown
that

E	�
i,j

nij

2
�� =

�i
ni·

2
� · � j
n·j

2
�


n

2
� . �4�

Then the adjusted Rand index is given as
July 2008/Vol. 47�7�4
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�U,V� =

�i,j
nij

2
� − 	�i
ni·

2
� · � j
n·j

2
��

n

2
�

1

2
	�i
ni·

2
� + � j
n·j

2
�� − 	�i
ni·

2
� · � j
n·j

2
��

n

2
� .

�5�

he adjusted Rand index returns values in the interval �0,
� and is to be maximized.

Let the known true partition be U= �u1 ,u2 , . . . ,uK� and
he clustering result be V= �v1 ,v2 , . . . ,vK�. Then ∀i , j

�1,2 , . . . ,K�, Confusion �i , j� denotes the number of data
oints that are both in the true cluster ui and in the cluster
j. Then the clustering error is defined as

E�U,V� =
1

N
�
i=1

K

�
j=1

i�j

K

Confusion�i, j� , �6�

here N is the size of the data set. Note that there exists a
enumbering problem, so the clustering error is computed
or all possible renumberings of V, and the minimum is

ig. 2 Typical implementation results on the artificial data sets ob-
ained from MEC: �a� Line-blobs; �b� Long1; �c� Size5; �d� Spiral; �e�
quare4; �f� Sticks; �G� Three-circles.
ptical Engineering 077201-
taken. The clustering error also returns values in the inter-
val �0, 1� and is to be minimized.

4.2 Implementation Results on Benchmark
Clustering Problems

We first select seven artificial data sets, named Line-blobs,
Long1, Size5, Spiral, Square4, Sticks, and Three-circles, to
study a range of different interesting data properties. The
distribution of data points in these sets can be seen in Fig.
2. We perform 30 independent runs on each problem. The
average results of the two metrics, the clustering error and
the adjusted Rand index, are shown in Table 2.

From Table 2, we can see clearly that MEC did best on
six out of the seven problems, while GAC did best only on
the Square4 data set. DSKM also obtained the true cluster-
ing on three problems. KM and GAC only obtained the
desired clustering for the two spheroid data sets, Size5 and
Square4. This is because the structure of the other five data
sets does not satisfy convex distribution. On the other hand,
MEC and DSKM can successfully recognize these complex

Fig. 3 Artificial texture images and their true partitioning: �a� original
Image1; �b� true partitioning of Image1; �c� original Image2; �d� true
partitioning of Image2; �e� original Image3; �f� true partitioning of
Image3.
July 2008/Vol. 47�7�5
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lusters, which indicates that the manifold distance metrics
re very suitable to measure complicated clustering struc-
ures.

In comparisons between MEC and DSKM, MEC ob-
ained the true clustering on Long1, Spiral, Sticks, Line-
lobs, and Three-circles in all 30 runs, but DSKM could
ot do so on Line-blobs and Three-circles. Furthermore, for
he Size5 and Square4 problems, MEC did a little better
han DSKM in both the clustering error and the adjusted
and index. The main drawback of DSKM is that it has to

ecalculate the geometrical center of each cluster with the
-means algorithm after cluster assignment, which reduces

ts ability to reflect global consistency. MEC avoids this
rawback by evolutionary searching of the cluster represen-
atives from a combinatorial optimization viewpoint.

In order to show the performance visually, typical simu-
ation results on the eight data sets obtained from MEC are
hown in Fig. 2.

.3 Implementation Results on Artificial Texture
Image Classification

mage1 is a simple 256�256 bipartite image �Fig. 3�a��.
he original image contains two textures, cork and cotton,
elected from the Brodatz texture images.23 Figure 3�b� rep-
esents the true partitioning of Image1. Image2 also con-
ains two textures, as shown in Fig. 3�c�, and Fig. 3�d�
epresents its true partitioning. Image3 is a more compli-

Table 2 Results of MEC, GAC,

Problem

Clustering error

MEC GAC DSKM

Line-blobs 0 0.263 0.132

Long1 0 0.445 0

Size5 0.010 0.023 0.015

Spiral 0 0.406 0

Square4 0.065 0.062 0.073

Sticks 0 0.277 0

hree-circles 0 0.569 0.055

Table 3 Results of MEC, GAC, DSKM, a

Problem

Clustering error

MEC GAC DSKM

Image1 0.0030 0.0069 0.0035

Image2 0.0037 0.1594 0.0072

Image3 0.1212 0.2554 0.1858
ptical Engineering 077201-
cated synthesized texture image with four classes, and
Fig. 3�e� and 3�f� represent the original image and the true
partitioning, respectively.

We perform 30 independent runs on each problem. The
average results for the two metrics, clustering error and
adjusted Rand index, are shown in Table 3. Figures 4–6 are
typical implementation results obtained from the four algo-
rithms, MEC, GAC, DSKM, and KM, in clustering the
three texture images, respectively.

As shown in Table 3, all the average values of the cluster
error obtained from MEC, GAC, DSKM, and KM in clus-
tering Image1 are less than 1%, so all the four algorithms
are easily able to segment Image1. The values of the cluster
error and adjusted Rand index and Fig. 4 also show that the
results obtained from MEC and DSKM are much better
than those from of GAC and KM, because both MEC and
DSKM assign data according to the manifold distance,
while GAC and KM assign data according to the Euclidien
distance. However, the computational cost of the manifold
distance is much larger than that of the Euclidean distance.
MEC and DSKM have similar results in clustering Image1.

In clustering Image2, the average value of the cluster
error obtained from MEC is much smaller than the results
obtained from GAC, DSKM, and KM, and the average
value of the adjusted Rand index of MEC is obviously
greater than the results obtained from GAC, DSKM, and
KM. So MEC does best on this problem. Figure 5 also

, and KM on artificial data sets.

Adjusted Rand index

M MEC GAC DSKM KM

56 1 0.399 0.866 0.409

86 1 0.011 1 0.012

24 0.970 0.924 0.955 0.920

08 1 0.034 1 0.033

73 0.835 0.937 0.816 0.816

79 1 0.440 1 0.504

45 1 0.033 0.921 0.044

on artificial texture image classification.

Adjusted Rand index

MEC GAC DSKM KM

0.9462 0.9115 0.9437 0.9113

0.9376 0.9057 0.9109 0.8869

0.8638 0.8012 0.8117 0.8094
DSKM

K

0.2

0.4

0.0

0.4

0.0

0.2

0.5
nd KM

KM

0.0071

0.2017

0.2899
July 2008/Vol. 47�7�6
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hows that the MEC result and the DSKM result are obvi-
usly better than the GAC result and the KM result, and the
EC result is better than the DSKM result. That MEC

egments the two textures better than DSKM may be be-
ause MEC searches the two cluster representatives using
volutionary searching but DSKM has to recalculate the

ig. 4 Typical implementation results obtained from �a� MEC, �b�
AC, �c� DSKM, and �d� KM in clustering Image1.

ig. 5 Typical implementation results obtained from �a� MEC, �b�
AC, �c� DSKM, and �d� KM in clustering Image2.
ptical Engineering 077201-
geometrical center of each cluster after cluster assignment
in each iteration, which reduces its ability to reflect global
consistency.

In clustering the more complicated texture image
Image3, all the average values of the cluster error are
greater than 12%, so none of the four algorithms can seg-
ment the image very well based on GLCM features. How-
ever, Table 3 and Fig. 6 show that MEC does much better
than the other three algorithms.

4.4 Implementation Results on Remote Sensing
Image Classification

The first image, as shown in Fig. 7�a�, is an X-band SAR
image of a lakeside in Switzerland. The size of the image is
140�155 pixels. We want to classify the image into three
clusters, namely, the lake, the city, and the mountainous
region. The second image, as shown in Fig. 7�b�, is a

Fig. 6 Typical implementation results obtained from �a� MEC, �b�
GAC, �c� DSKM, and �d� KM in clustering Image3.

Fig. 7 Original SAR images: �a� X-band, �b� Ku-band.
July 2008/Vol. 47�7�7
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u-band SAR image of the Rio Grande River nearby Al-
uquerque, New Mexico, USA. The size of the image is
56�256 pixels. We want to classify the image into three
lusters, namely, the river, the vegetation, and the crop.
igures 8 and 9 show the clustering results obtained from

he MEC, DSKM, GAC, and KM in clustering these two
AR images, respectively.

Figure 8 shows that all methods are readily able to per-
orm the classification of the X-band SAR image. Figure
�b� and 8�d� show that many mountainous regions in the
ottom left are identified as lake by KM and GAC. Figure
�a� and 8�c� show that MEC can recognize these regions
nd DSKM can reduce the erroneous identifications. Mean-
hile, KM badly confuses many mountainous regions in

he top left with city regions. MEC largely avoids these
rrors. Generally speaking, the MEC method outputs better
artitioning.

Figure 9 shows that MEC, GAC, DSKM, and KM gen-
rate different results, and none of the methods performs as
ell as on the first SAR image. Generally speaking, the two
ethods based on the manifold distance generate better

artitioning than GAC and KM. The dissimilarity measure
ased on Euclidean distance tends to confuse the crop with
he river. MEC and DSKM generate better partitioning of
he river region. In distinguishing the vegetation and crop,
he partitioning results of GAC and KM appear more dis-
ontinuous than those of MEC and DSKM. GAC and KM
end to confuse the vegetation with the crop along the river,
ssigning more to the crop than it should. However, MEC
nd DSKM tend to identify the vegetation in the bottom left

ig. 8 Implementation results obtained from �a� MEC, �b� GAC, �c�
SKM, and �d� KM in clustering the X-band SAR image.
ptical Engineering 077201-
as the river, due to the gray level of the lands in that region.
DSKM also tends to confuse the vegetation with the crop in
the region along the river and in the bottom left of the
image. Generally speaking, MEC does better than DSKM,
GAC does better than KM, and MEC and DSKM do much
better than GAC and KM, in partitioning this Ku-band SAR
image.

4.5 Robustness and Computing Time
In order to compare the robustness of these methods, we
follow the criteria used in Ref. 24. In detail, the relative
performance of the algorithm m on a particular data set is
represented by the ratio bm of the mean value of its adjusted
rand index �Rm� to the highest mean value of the adjusted
Rand index among all the compared methods:

bm =
Rm

max
k

Rk
. �7�

The best method m* on that data set has bm*=1, and all the
other methods have bm�1. The larger the value of bm, the
better the performance of the method m is in relation to the
best performance on that data set. Thus the sum of bm over
all data sets provides a good measure of the robustness of
the method m. A large value of the sum indicates good
robustness.

Figure 10 shows the distribution of bm of each method
over the ten problems. For each method, the ten values of
bm are stacked, and the sum is given on top of the stack.
Figure 10 reveals that MEC has the highest sum value. In
fact, the bm values of MEC are equal or very close to 1 on
all the test problems, which indicates that MEC performs

Fig. 9 Implementation results obtained from �a� MEC, �b� GAC, �c�
DSKM, and �d� KM in clustering the Ku-band SAR image.
July 2008/Vol. 47�7�8
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ery well in different situations. Thus MEC is the most
obust method among the compared methods.

Figure 11 shows the sum of the computing times of the
our algorithms in solving the twelve problems on an IBM
ntelliStation M Pro 6233. From Fig. 11, it can be seen that
he computing time of MEC is obviously longer than the
omputing time of GAC and KM. The main computational
ost of MEC lies in computing the manifold distance
etween each pair of data points.

Concluding Remarks
n this study, we have proposed manifold evolutionary clus-
ering using a novel representation method and a manifold-
istance-based dissimilarity measure to perform unsuper-
ised image classification based on texture features. The
xperimental results on seven artificial data sets with dif-
erent manifold structure, three artificial texture images,
nd two SAR images showed that the novel manifold evo-
utionary clustering algorithm outperformed the KM, GAC,
nd DSKM in terms of cluster quality and robustness. MEC
voided up the drawbacks of the DSKM by evolutionary
earching of cluster representatives from a combinatorial
ptimization viewpoint instead of recalculating the center
f each cluster after cluster assignment.

The manifold evolutionary clustering algorithm is a
rade-off of flexibility in clustering data with computational
omplexity. The main computational cost for the flexibility
n detecting clusters lies in searching for the shortest path
etween each pair of data points, which makes it much

Fig. 10 Robustness of the algorithms compared.

Fig. 11 Computing times of the compared algorithms.
ptical Engineering 077201-
slower than GAC and KM. To find a fast or approximate
method of computing the manifold distance is part of our
future work.
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