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Abstract. In this study, we propose a novel evolutionary algorithm-based 
clustering method, named density-sensitive evolutionary clustering (DSEC). In 
DSEC, each individual is a sequence of real integer numbers representing the 
cluster representatives, and each data item is assigned to a cluster representative 
according to a novel density-sensitive dissimilarity measure which can measure 
the geodesic distance along the manifold. DSEC searches the optimal cluster 
representatives from a combinatorial optimization viewpoint using evolutionary 
algorithm. The experimental results on seven artificial data sets with different 
manifold structure show that the novel density-sensitive evolutionary clustering 
algorithm has the ability to identify complex non-convex clusters compared 
with the K-Means algorithm, a genetic algorithm-based clustering, and a 
modified K-Means algorithm with the density-sensitive distance metric. 

1   Introduction 

Many clustering approaches, such as the K-Means Algorithm[1], partition the data set 
into a specified number of clusters by minimizing certain criteria. Therefore, they can 
be treated as an optimization problem. As global optimization techniques, 
Evolutionary algorithms (EAs) have been used for clustering tasks commonly in 
literature.[2][3][4] The solution representation and dissimilarity measure are the main 
difficulties in designing EA for clustering. Many researchers have used a 
representation approach that borrows from the K-Means algorithm: the representation 
codes for cluster center only, and each data item is subsequently assigned to a cluster 
representative according to an appointed dissimilarity measure.[5] The most popular 
dissimilarity measure is the Euclidean distance. By using Euclidean distance as a 
measure of dissimilarity, these evolutionary clustering methods as well as the K-
Means algorithm have a good performance on the data set with compact super-sphere 
distributions, but tends to fail in the data set organized in more complex and unknown 
shapes, which indicates that this dissimilarity measure is undesirable when clusters 
have random distributions. As a result, it is necessary to design a more flexible 
dissimilarity measure for clustering. Su and Chou [6] proposed a nonmetric measure 
based on the concept of point symmetry, according to which a symmetry-based 
version of the K-Means algorithm is given. This algorithm assigns data points to a 
cluster center if they present a symmetrical structure with respect to the cluster center. 
Therefore, it is suitable to clustering data sets with clear symmetrical structure. 
Charalampidis [7] recently developed a dissimilarity measure for directional patterns 
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represented by rotation-variant vectors and further introduced a circular K-Means 
algorithm to cluster vectors containing directional information. 

In this study, we propose a novel evolutionary algorithm-based clustering 
technique, named density-sensitive evolutionary clustering (DSEC), by using a novel 
representation method and a density-sensitive dissimilarity measure. In DSEC, each 
string is a sequence of the cluster representatives selected from all the data items. The 
density-sensitive dissimilarity measure can describe the distribution characteristic of 
data clustering. The experimental results on seven artificial data sets show that the 
novel density-sensitive evolutionary clustering algorithm is very suitable to identify 
complex non-convex clusters compared with the K-Means algorithm [1], a genetic 
algorithm-based clustering [3], and a modified K-Means algorithm with the density-
sensitive distance metric [8].  

2   A Novel Density-Sensitive Dissimilarity Measure 

For real world problems, the distribution of data points takes on a complex manifold 
structure, which results in the classical Euclidian distance metric can only reflect the 
local consistency which refers that data points close in location will have a high 
affinity, but fail to describe the global consistency which refers that data points 
locating in the same manifold structure will have a high affinity. We can illustrate this 
problem by the following example. As shown in Fig. 1(a), we expect that the affinity 
between point 1 and point 3 are higher than that of point 1 and point 2. In other 
words, point 1 is much closer to point 3 than to point 2 according to some distance 
metric. In terms of Euclidian distance metric, however, point 1 is much closer to point 
2, thus without reflecting the global consistency. Hence for complicated real world 
problems, simply using Euclidean distance metric as a dissimilarity measure can not 
fully reflect the characters of data clustering. 

      
(a)                                                                  (b) 

Fig. 1. (a) An illustration of that the Euclidian distance metric can not reflect the global 
consistency; (b) An illustration of that the global consistency of clustering does not always 
satisfy the triangle inequality under the Euclidean metric 

Here, we want to design a novel dissimilarity measure with the ability of reflecting 
both the local and global consistency. As an example, we can observe from the data 
distribution in Fig. 1(a) that data points in the same cluster tend to lie in a region of 
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high density, and there exists a region of low density where there are a few data 
points. We can design a data-dependent dissimilarity measure in terms of that 
character of local data density. 

At first, data points are taken as the nodes V  of a weighted undirected graph 
( , )G V E= . Edges { }ijE W=  reflect the affinity between each pair of data points. We 

expect to design a dissimilarity measure that ascribes high affinity to two points if 
they can be linked by a path running along a region of high density, and a low affinity 
if they cannot. This concept of dissimilarity measure has been shown in experiments 
to lead to significant improvement in classification accuracy when applied to semi-
supervised learning [9][10]. We can illustrate this concept in Fig 1(a), that is, we are 
looking for a measure of dissimilarity according to which point 1 is closer to point 3 
than to point 1. The aim of using this kind of measure is to elongate the paths that 
cross low density regions, and simultaneously shorten those that not cross. 

To formalize this intuitive notion of dissimilarity, we need first define a so-called 
density adjusted length of line segment. We have found a property that a distance 
measure describing the global consistency of clustering does not always satisfy the 
triangle inequality under the Euclidean metric. In other words, a direct connected path 
between two points is not always the shortest one. As shown in Fig 1(b), to describe 
the global consistency, it is required that the length of the path connected by shorter 

edges is smaller than that of the direct connected path, i.e. af fe ed dc cb ab+ + + + < . 

Enlightened by this property, we define a density adjusted length of line segment as 
follows. 

Definition 1. The density adjusted length of line segment  ( , )i jx x   is defined as 

( , )( , ) 1i jdist x x

i jL x x ρ= −  (1) 

where ( ),i jdist x x  is the Euclidean distance between ix  and jx , 1ρ >  is the flexing 

factor. 

Obviously, this formulation possesses the property mentioned above, thus can be 
utilized to describe the global consistency. In addition, the length of line segment 
between two points can be elongated or shortened by adjusting the flexing factor ρ . 

According to the density adjusted length of line segment, we can further introduce 
a new distance metric, called density-sensitive distance metric, which measures the 
distance between a pair of points by searching for the shortest path in the graph. 

Definition 2. Let data points be the nodes of graph ( , )G V E= , and lp V∈  be a path 

of length 1l p= −  connecting the nodes 1p  and 
p

p , in which 1( , )k kp p E+ ∈ , 

1 k p≤ < . Let ,i jP  denote the set of all paths connecting nodes ix  and jx . The 

density-sensitive distance metric between  ix  and jx  is defined as 

,

1

1
1

( , ) min ( , )
i j

p

i j k kp
k

D x x L p p
−

+∈
=

= ∑P
 (2) 
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Thus ( , )i jD x x  satisfies the four conditions for a metric, i.e. ( , ) ( , )i j j iD x x D x x= ; 

( , ) 0i jD x x ≥ ; ( , ) ( , ) ( , )i j i k k jD x x D x x D x x≤ +  for all , ,i j kx x x ; and ( , ) 0i jD x x =  if 

and only if i jx x= . 

As a result, the density-sensitive distance metric can measure the geodesic distance 
along the manifold, which results in any two points in the same region of high density 
being connected by a lot of shorter edges while any two points in different regions of 
high density are connected by a longer edge through a region of low density, thus 
achieving the aim of elongating the distance among data points in different regions of 
high density and simultaneously shortening that in the same region of high density. 
Hence, this distance metric is data-dependent, and can reflect the data character of 
local density, namely, what is called density-sensitive. 

3   Evolutionary Clustering Based on the Density-Sensitive 
Dissimilarity Measure 

3.1   Representation and Operators 

In this study, we consider the clustering problem from a combinatorial optimization 
viewpoint. Each individual is a sequence of real integer numbers representing the 
sequence number of K cluster representatives. The length of a chromosome is K 
words, where the first gene represents the first cluster, the second gene represents the 
second cluster, and so on. As an illustration, let us consider the following example. 

Example 1. Let the size of the clustered data set be 100 and the number of clustering 
being considered be 5. Then the individual (6, 19, 91, 38, 64) represents that the 6-th, 19-
th, 91-th, 38-th, and 64-th points are selected to represent the five clusters, respectively.  

So this representation method does not mention the data dimension. If the size of 
the data set is N and the number of clustering is K, then the search space is NK. 

Crossover is a probabilistic process that exchanges information between two parent 
individuals for generating offspring. In this study, we choose the uniform crossover 
[11] because it is unbiased with respect to the ordering of genes and can generate any 
combination of alleles from the two parents.[12][5] An example of the operation of 
uniform crossover on the encoding employed is shown in example 2. 

Example 2. Let the two parent individuals be (6, 19, 91, 38, 64) and (3, 29, 17, 61, 6), 
random generate the mask (1, 0, 0, 1, 0), then the two offspring after crossover are (6, 
29, 17, 38, 64) and (3, 19, 91, 61, 64). In this case, the first offspring is not (6, 29, 17, 
38, 6) because the 6 in bold is repeat, we keep it unchanged.   

Each individual undergoes mutation with probability pm as example 3. 

Example 3. Let the size of the clustered data set be 100 and the number of clustering 
being considered be 5. Then the individual (6, 19, 91, 38, 64) can mutate to (6, 
19+floor((100-19)*random+1), 91, 38, 64) or (6, 19-floor((19-1)*random+1), 91, 38, 
64) equiprobably, where the second gene is selected to mutate, random denotes a 
uniformly distributed random number in the range [0,1), and floor denotes rounding 
towards minus infinity. 
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3.2   Objective Function 

Each point is assigned to the cluster whose density-sensitive distance of its 
representative to the point is minimum. As an illustration, let us consider the 
following example. 

Example 4. Let the 6-th, 19-th, 91-th, 38-th, and 64-th points represent the five 
clusters, respectively. For the first point, we compute the density-sensitive distance 
between it and the 6-th, 19-th, 91-th, 38-th, and 64-th points, respectively. If the 
density-sensitive distance between the first point and the 38-th point is the minimum 
one, then the first point is assigned to the cluster represented by the 38-th point. All 
the points are assigned in the same way.  

Subsequently, the objective function is computed as follows: 

( ) ( , )
k k

k
C C i C

Dev C D i μ
∈ ∈

= ∑ ∑  (3) 

where C  is the set of all clusters, kμ  is the representative of cluster kC , and ( , )kD i μ  

is the density-sensitive distance between the i-th data item of cluster kC  and kμ . 

3.3   Density-Sensitive Evolutionary Clustering Algorithm 

The processes of fitness computation, roulette wheel selection with elitism [13], 
crossover, and mutation are executed for a maximum number of generations Gmax. The 
best individual in the last generation provides the solution to the clustering problem.  

Algorithm 1. Density-Sensitive Evolutionary Clustering (DSEC) 
Begin 
1. t=0 
2. random initialize population P(t) 
3. assign all points to clusters according to the density-

sensitive dissimilarity measure and compute the objective 
function values of P(t) 

4. t=t+1 
5. if t< Gmax 
6.    select P(t) from P(t-1) 
7.    crossover P(t) 
8.    mutate P(t) 
9.    go to step 3 
10. end if 
11. output best and stop 
end 

Fig. 2. Density-Sensitive Evolutionary Clustering 

The initial population in step 2 is initialized to K randomly generated real integer 
number in [1, N], where N is the size of the data set. This process is repeated for each 
of the P chromosomes in the population, where P is the size of the population. 
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4   Experimental Results 

In order to validate the clustering performance of DSEC, here we give the 
experimental results on seven artificial data sets, named Line-blobs, Long1, Size5, 
Spiral, Square4, Sticks, and Three-circles, with different manifold structure. The 
distribution of data points in these data sets can be seen in Fig. 3. The results will be 
compared with the K-Means algorithm (KM)[1], a modified K-Means algorithm using 
the density-sensitive dissimilarity measure (DSKM)[8], and the genetic algorithm-
based clustering technique (GAC) [3]. In all the algorithms, the desired clusters 
number is set to be known in advance. The parameter settings used for DSEC and 
GAC in our experimental study are given in Table 1. For DSKM and KM, the 
maximum iterative number is set to 500, and the stop threshold 1e-10. 

Table 1. Parameter settings for DSEC and GAC 

Parameter DSEC GAC 
Maximum Number of generations 100 100 

population size 50 50 
Crossover probability 0.8 0.8 
Mutation probability 0.1 0.1 

Clustering quality is evaluated using two external measures, the Adjusted Rand 
Index [5] and the Clustering Error [8]. The adjusted rand Index returns values in the 
interval [0, 1] and is to be maximized. The clustering error also returns values in the 
interval [0, 1] and is to be minimized.  

We perform 30 independent runs on each problem. The average results of the two 
metrics, clustering error and adjusted rand index, are shown in Table 2. 

Table 2. Results of DSEC, GAC, DSKM and KM where the results in bold are the best ones 

Clustering Error Adjusted Rand Index Problem 
DSEC GAC DSKM KM DSEC GAC DSKM KM 

line-blobs 0 0.263 0.132 0.256 1 0.399 0.866 0.409 
Long1 0 0.445 0 0.486 1 0.011 1 0.012 
Size5 0.010 0.023 0.015 0.024 0.970 0.924 0.955 0.920 
Spiral 0 0.406 0 0.408 1 0.034 1 0.033 

Square4 0.065 0.062 0.073 0.073 0.835 0.937 0.816 0.816 
Sticks 0 0.277 0 0.279 1 0.440 1 0.504 

Three-circles 0 0.569 0.055 0.545 1 0.033 0.921 0.044 

From Table 2, we can see clearly that DSEC did best on six out of the seven 
problems, while GAC did best only on the Square4 data set. DSKM also obtained the 
true clustering on three problems. KM and GAC only obtained desired clustering for 
the two spheroid data sets, i.e. Size5 and Square4. This is due to that the structure of 
the other five data sets does not satisfy convex distribution. On the other hand, DSEC 
and DSKM can successfully recognize these complex clusters, which indicate the 
density-sensitive distance metric are very suitable to measure complicated clustering 
structure. When comparisons are made between DSEC and DSKM, the two 
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algorithms can obtained the true clustering on the Long1, Spiral, Sticks in all the 30 
runs, but DSKM can not do it on the Line-blobs and Three-circles. Furthermore, for 
the Size5 and Square4 problems, DSEC did a little better than DSKM in both the 
clustering error and the adjusted rand index. The main drawback of DSKM is that it 
has to recalculate the geometrical center of each cluster as the K-Means algorithm 
after cluster assignment which reducing the ability of reflecting the global 
consistency. DSEC made up this drawback by evolutionary searching the cluster 
representatives from a combinatorial optimization viewpoint. In order to show the 
performance visually, the typical simulation results on the eight data sets obtained 
from DSEC are shown in Fig. 3. 

0 0.2 0.4 0.6 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 
(a) Line- blobs 

-4 -2 0 2 4 6
-4

-2

0

2

4

 
(b) Long1 

-10 0 10 20
-10

-5

0

5

10

15

20

 
(c) Size5 

-10 -5 0 5 10
-10

-5

0

5

10

 
(d) Spiral 

-10 -5 0 5 10 15
-10

-5

0

5

10

15

 
(e) Square4 

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

 
(f) Sticks 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
(G) Three-circles 

Fig. 3. The typical results on the artificial data sets obtained from DSEC 
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5   Concluding Remarks 

In this paper, we proposed the density-sensitive evolutionary clustering by using a 
novel representation method and a density-sensitive dissimilarity measure. The 
experimental results on seven artificial data sets showed that in terms of cluster 
quality, DSEC outperformed GAC, DSKM and KM in partitioning most of the test 
problems. 

The density-sensitive evolutionary clustering algorithm is a trade-off of flexibility 
in clustering data with computational complexity. The main computational cost for 
the flexibility in detecting clusters lies in searching for the shortest path between each 
pair of data points which makes it slower than KM and GAC. 
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