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Spectral Clustering Ensemble Applied
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Abstract—Spectral clustering (SC) has been used with success in
the field of computer vision for data clustering. In this paper, a new
algorithm named SC ensemble (SCE) is proposed for the segmen-
tation of synthetic aperture radar (SAR) images. The gray-level
cooccurrence matrix-based statistic features and the energy fea-
tures from the undecimated wavelet decomposition extracted for
each pixel being the input, our algorithm performs segmentation
by combining multiple SC results as opposed to using outcomes of
a single clustering process in the existing literature. The random
subspace, random scaling parameter, and Nyström approxima-
tion for component SC are applied to construct the SCE. This
technique provides necessary diversity as well as high quality of
component learners for an efficient ensemble. It also overcomes
the shortcomings faced by the SC, such as the selection of scaling
parameter, and the instability resulted from the Nyström approxi-
mation method in image segmentation. Experimental results show
that the proposed method is effective for SAR image segmentation
and insensitive to the scaling parameter.

Index Terms—Image segmentation, spectral clustering (SC),
synthetic aperture radar (SAR), unsupervised ensemble.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) images find increas-
ingly wide applications because SAR sensors can penetrate

clouds and work in bad weather conditions and in nighttime
when optical sensors are inoperable. An important problem
in SAR image applications is correct segmentation. It is the
basis of the understanding of SAR images, such as the change
detection of regions for maps updating [1], the recognition of
targets [2], and so on. The purpose of SAR image segmentation
is to partition an image into regions of different character-
istics. There are many approaches available for SAR image
segmentation including threshold methods [3], [4], clustering
algorithms [5], [6], statistic model-based methods [7]–[9], and
morphologic methods [10], [11].

This paper reexamines the approach of clustering-based SAR
image segmentation. Among the existing clustering algorithms,
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k-means algorithm is the most popular and simplest one. The
k-means algorithm is efficient for clusters with spherical shapes
in input space. However, many data sets in practice do not
have this shape. Recently, a family of spectral clustering (SC)
algorithms [12]–[17] were proposed and have shown great
promise. Compared with traditional clustering algorithms, SC
has some obvious advantages. It can recognize the clusters
of unusual shapes and obtain the globally optimal solutions
in a relaxed continuous domain by eigendecomposition. This
property makes SC more suitable for many applications, such
as speech separation [18], image segmentation [12], [13], very
large scale integration design [19], and so on. However, sev-
eral problems are still not solved satisfactorily [20], [21]. For
example, the method is computationally expensive because it
uses an affinity matrix constructed by the similarity of each
pair of pixels and needs to compute the eigenvectors of the
affinity matrix. Furthermore, SC requires setting a parameter,
namely, the scaling parameter σ in the Gaussian radial basis
function (RBF). Appropriate setting of σ is crucial for obtaining
good segmentation results in SC. Unfortunately, it is difficult to
choose the appropriate σ value, and it is always set manually.
The incorrect value of σ can degrade the performance as the
SC is highly sensitive to σ, and different values of σ may lead
to drastically different results. The proper setting of the scaling
parameter still remains an open issue, and there is no known
effective method.

In this paper, we develop an SC ensemble (SCE) algo-
rithm to avoid the selection of the appropriate scaling param-
eter. It was proved that accuracy and diversity of component
learners are necessary in the construction of strong ensemble
learning [22], [23]. In this paper, the samples are first parti-
tioned by multiple SCs with random scaling parameters, which
not only provides the necessary diversity for ensemble, but also
avoids the scaling parameter selection for each individual SC.

If SAR images are segmented directly with SC, we face the
problem of high computational cost. To make the proposed
ensemble method efficient for large-scale problems, an SC al-
gorithm using Nyström method [12] is applied as the base-level
learner of the ensemble for its lower computational complexity.
In the Nyström method, a small set of randomly sampled data
points from all pixels is used to perform the approximation.
However, this method is instable for image segmentation. As
we know, injecting randomness into base-level learner could
be helpful in generating diverse component learners, which
has been employed in various ensemble learning [24]–[26].
Therefore, the native instability of the SC using Nyström
method can be used in the ensemble construction conveniently.
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Furthermore, we can get a robust and stable segmentation result
by the SCE.

The remainder of this paper is organized as follows. Two
types of features for SAR image segmentation are presented in
Section II. In Section III, a classic SC algorithm is reviewed. In
Section IV, the SCE construction and an associated aggregation
strategy are presented. Experimental results in comparison with
other methods are provided in Section V. Conclusions are
drawn in Section VI.

II. FEATURES FOR SAR IMAGE SEGMENTATION

The purpose of image segmentation based on region partition
is to assign a specific class label for each pixel. Therefore, it
comes down to a large-scale clustering problem. At the same
time, proper features should be extracted to differentiate the
land covers effectively. Texture can provide abundant useful
information for SAR image analysis [27], and so far, many
different texture features have been proposed. In this paper, we
focus on investigating the performance of the statistic features
which are derived from the gray-level cooccurrence matrix
(GLCM) [28] and the energy features from the undecimated
wavelet decomposition [29] for SAR image segmentation.
1) GLCM-Based Statistic Features: GLCM method was

frequently used in texture analysis and extraction for SAR
images [27], [30]. Texture features are demonstrated by the
statistics over the GLCM. Four usually used statistics are
angular second moment (also called energy), correlation, en-
tropy, and inverse difference moment (also called inertia). In
this paper, the 14 statistics, including previous four, suggested
by Haralick et al. [28] are exploited because more features
will provide diversity to ensemble. There are four parameters
that must be indicated to generate a GLCM, i.e., the inter-
pixel orientation, distance, gray-level quantization, and window
size [31]. Here, we set the interpixel orientation to 0◦ for conve-
nient calculation. Short interpixel distances typically generate
the preferred texture features in SAR image analysis [32], so
we set interpixel distance to one. The role of different values
for gray levels and windows size with respect to statistics from
GLCM has been investigated in many literatures [30], [33].
According to their analysis and fine-tune experiments, in this
paper, we set the image quantization to 16 and the window size
to 9 × 9.

2) Wavelet Energy Features: Wavelet transform has
the ability to examine a signal at different scales [29]. In
this paper, the undecimated wavelet-based feature vector
composed by the energies of the subband coefficients is used.
Here, we implement three-level wavelet decomposition on
each square local area with size of 16 × 16. The features
of each pixel can be represented as a ten-dimension vector
(eLL−1, eLH−1, eHL−1, eHH−1, eLH−2, eHL−2, eHH−2, eLH−3,
eHL−3, eHH−3), in which, for example eLL−1 denotes the
energy of the LL subimage in the first level. Wavelet
transform generates localized spatial and spectral information
simultaneously. The energy of the low-pass subimage eLL−1

describes the spectral information. The other features except
eLL−1 characterize the textural properties [34]. Incorporating
all the features will enhance the performance.

TABLE I
SC ALGORITHM

III. SC

In general, the SC first embeds data points into a new
space by the eigenvectors of an affinity matrix. This affinity
matrix defines the similarities in the data. Moreover, a Gaussian
function was often used as the similarity function with form

wij = exp
(
−‖xi − xj‖2/2σ2

)
(1)

where σ is the scaling parameter, and Wij the similarity
of samples xi and xj .The top k eigenvectors are used as
k-dimension indicator vectors for samples. A simple clustering
algorithm such as k-means clustering is used to get k clusters.
The algorithm is summarized in Table I.

The main trick of the SC is to map data points into a new
space with k-dimension by means of eigenvector decomposi-
tion, wherein the data points form tight clusters. Therefore,
we can get the natural clusters of data points with k-means
clustering in this space, as performed in step 5.

However, given a data set with n samples, the size of the
affinity matrix will be n × n, and the complexity of eigenvector
calculations in high dimensionality is O(n3). In order to reduce
the computational cost, the SC using Nyström approximation
was proposed in literature [12]. It works by first solving the
grouping problem for a small random subset of pixels and then
extrapolating this solution to the full sample set. Its compu-
tational complexity is reduced to O(m2n), where m is the
number of samples randomly chosen from n samples. It was
shown that 100 randomly chosen pixels are sufficient to capture
the salient groups in typical natural images [12]. Therefore,
m � n in applications. In this paper, the SC using Nyström
method is used as the base-level clustering of the ensemble for
SAR image segmentation.

IV. SCE LEARNING

A. Clustering Ensemble Problem

Ensemble learning has been successfully applied in the su-
pervised learning by using various strategies [35], [36]. In-
spired by the success of classifier ensemble, research on the
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unsupervised ensemble or clustering ensemble is receiving
more attention gradually. It is deemed that clustering ensembles
can go beyond what is typically achieved by a single clustering
algorithm in several respects, such as robustness, stability and
confidence estimation, and parallelization and scalability [37].
Recently, many promising results have been reported in [24],
[38]–[42].

The clustering ensemble problem can be described as fol-
lows. Let r be the number of component clusterings in the
considered ensemble, and Π denote the set of the component
clustering results Π = {λ(1), λ(2), . . . , λ(r)}, in which ith clus-
tering solution λ(i) = {C(i)

1 , C
(i)
2 , . . . , C

(i)
ki

} partitions the data
set X into ki disjoint clusters. The final partition of X will be
gotten from the available r component clustering results in Π.

Because there is no corresponding relationship between two
clustering results, combining multiple label vectors in clus-
tering ensemble is more difficult than in classifier ensemble.
For instance, there are two clustering results of the same data
set X , whose label vectors are λ(1) = [1, 1, 1, 2, 2, 3, 3]T and
λ(2) = [2, 2, 2, 3, 3, 1, 1]T, respectively. Although the two label
vectors are different in appearance, they are logically iden-
tical, namely, they denote the same partition of X . For this
challenging problem, several approaches are available, such
as the evidence accumulation approach [41], [42], hypergraph
operations-based method [24], mixture model-based aggrega-
tion [37], voting methods [39], [43], etc.

In this paper, we can get two benefits for SAR image segmen-
tation by constructing an SCE. On one hand, better segmenta-
tion result is obtained. On the other hand, some problems of the
SC can be solved to some degree, for instance, the selection of
the scaling parameter σ in (1) for individual clustering and the
instability due to the Nyström approximation.

The construction of the SCE consists of two phases, the
generation of component clusterings and the combination of
multiple clustering results.

B. Generation of Diverse Component Clusterings

Combining several identical predictors produces no gain
[35]; therefore, the diversity of components is very important
for improving the performance of an ensemble. To construct
a clustering ensemble, the diversity of component learners can
be obtained through two ways: the input perturbation and the
clustering algorithm perturbation. To the input perturbation,
the component clusterings can be gotten from different feature
subsets of the same samples, which were generated by feature
selection technique, random subspace method [24], the random
projection method [25], etc. In addition, resampling methods
such as bagging [39] or boosting [40] technique can be used
to get different input as well. To the clustering algorithm per-
turbation, the different clustering algorithms [38] and the same
clustering algorithm with different initialization or parameters
are both useful for improving the diversity of the components.
In this paper, multimodal perturbations for component cluster-
ings are adopted, which are convenient to perform for the SC.
1) Random Scaling Parameter: Parameter selection is a

popular problem in machine learning. It directly impacts the
performance of the learning machine.

Let us take a supervised learning, such as a support vector
machine (SVM) [44] with Gaussian kernel, serve as an illustra-
tion. In SVM, the magnitude of penalty factor C and the scaling
parameter σ need to be selected carefully, and high generaliza-
tion ability can be obtained with appropriate parameter settings.
Generally, the proper learning parameters could be selected
by the q-fold cross-validation on the training set. The process
takes q times of computation to evaluate a parameter set. It
is exhaustive. However, the intractable problem is becoming
resolvable.

Comparing with the supervised learning, it is harder to
select the appropriate parameters in the unsupervised learn-
ing, because there is no prior information about the data set.
Generally, the parameter is manually determined. The SC is
very sensitive to the scaling parameter. Obviously, such a fact
is not desirable for applications but useful for constructing an
ensemble. Therefore, we randomly pick the parameter σi of
ith component SC from the preestablished interval [σmin, σmax]
with uniform distribution in our method. Using random scaling
parameter in component clustering not only avoids the cost of
accurate parameter selection for each individual SC, but also
provides the required diversity for the clustering ensemble.
2) Instability From Nyström Method: The SC belongs to

pairwise grouping methods, which requires comparing all pos-
sible data points for composing the affinity matrix. For in-
stance, a given image of 256 × 256 pixels has 65 536 points,
and the size of the generated affinity matrix will be 65 536×
65 536. This requires great cost of computation and storage.
The SC using Nyström method [12] is a better solution for the
application of the SC in the image segmentation. However, the
random sampling in the Nyström approximation will lead to
different results in different runs, which will be demonstrated
in Section V-A. Fortunately, this fact is also helpful for con-
structing an efficient ensemble because the difference between
components is essential for an ensemble. In consideration of
computation and diversity, we apply the SC using Nyström
method as the base-level learner of the ensemble.
3) Random Initialization: SC can get the global-optima in

the relaxed continuous domain by eigendecomposing. In order
to get a discrete solution from eigenvectors, it is required to
solve another clustering problem in a lower dimension space.
Generally, k-means clustering is employed here. It is well
known that k-means clustering is sensitive to the initialization.
Therefore, we will do nothing to interfere with the initialization
of k-means in this paper because the random initial values could
be helpful in improving diversity as well.
4) Random Subspace: Using various features can improve

the performance of SAR image segmentation. In Section II,
we reviewed two types of features: the GLCM-based statistic
features and the wavelet energy features. Not all the features
are useful for different types of land cover in different SAR
images. Also, there are usually some features irrelevant to the
learning task. Feature selection is a good solution for finding the
optimal feature subset to a given task. It is also effectively used
in the classifier ensemble, in which the diversity and accuracy
of the component learners with selected feature subsets can be
evaluated on the training set by the holdout technique. Here, we
cannot evaluate the feature subsets for unsupervised ensemble.
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Fig. 1. Spectral clustering ensemble construction.

It is doubtless that different feature subspaces will give the dif-
ferent observations of objects, and the component learners with
different feature subspaces might be quite diverse. In this paper,
the random subspace approach [26] is used in the construction
of the clustering ensemble for its convenience and effectiveness.
In our experiment, a feature subset is randomly chosen from all
features for each component SC, and the number of features is
randomly determined by di.

From the above four points, we can describe the construction
of SCE as follows. For each pixel of the SAR image, we
extract features with a moving window first. Also, all pixels
represented by randomly selected features from all features are
the input of each individual clustering. The SC using Nyström
method is applied as the base-level clustering whose scaling pa-
rameter is randomly chosen from [σmin, σmax]. This procedure
can be seen in Fig. 1.

C. Combination of Multiple Clustering Results

The combination of multiple results is a difficult task because
the class label is only a symbolic in clustering.

The majority voting is one of the most widely used aggre-
gation methods in the classifier ensemble. However, it cannot
be used in the clustering ensemble directly. We should find the
correspondence of all labels first. It is carried out under the
supposition that the most similar clusters should contain max-
imum number of the similar objects. All component clustering
results are relabeled according to a given reference partition.
Also, the performance of the reference partition ties up with the
ensemble result. In our algorithm, we get a reference partition
by clustering the samples with all extracted features, and all
the components are relabeled according to their best agreement
with the reference partition. Suppose there are two clustering
results whose label vectors are λ(a) and λ(b), respectively. The
data set X is partitioned into k disjoined clusters which is
denoted by {C(a)

1 , C
(a)
2 , . . . , C

(a)
k } and {C(b)

1 , C
(b)
2 , . . . , C

(b)
k }.

We then get a symmetric matrix S with size k × k whose

value sij is the number of overlapped data points in the pair of

clusters C
(a)
i and C

(b)
j . The pair of clusters, whose number of

the overlapped data points is the largest, is corresponding in the
way that they are designated to the same label. Such a process
is repeated until all the clusters are corresponding. After the
alignment, the majority voting strategy is carried out to get the
final prediction similar to the supervised ensemble.

However, it is impossible that one combination method is ef-
fective for all data sets. The majority voting method is effective
for problems with small number of classes. When the number
of classes is large, the corresponding strategy in the majority
voting may bring a risk for the final result. Therefore, other kind
of combination methods is needed for remediation.

As mentioned before, the segmentation of SAR image is a
large-scale clustering problem. Aggregation algorithms based
on the similarity matrix, such as the coassociation matrix-
based consensus function [42] with complexity O(n2) and
cluster-based similarity partitioning algorithm (CSPA) [24]
with complexity O(kn2r), cannot be used because of their large
demand of computation and storage. Among the hypergraph-
based consensus functions, metaclustering algorithm (MCLA)
with complexity O(k2nr2) has been proved to be an effi-
cient one [24]. Therefore, it is used in this paper to combine
r clustering results.

In the MCLA, the label vector set is first transformed into
a hypergraph representation. MCLA is to group and collapse
related hyperedges and assign each object to the collapsed hy-
peredge in which it participates most strongly. The hyperedges
that are considered to be related for the purpose of collapsing
are determined by a graph-based clustering of hyperedges. Each
cluster of hyperedges is referred to as a metacluster C(M).
Collapsing reduces the number of hyperedges from rk to k.

For various data sets, it is hard to conclude that which type
of consensus function is more efficient. Therefore, two different
types of consensus function, MCLA and the majority voting
method, are both used to combine the component clustering
results. The better solution is the one that shares the most
information with the original clusterings. Mutual information
provides a sound indication of the shared information between
a pair of clusterings [24]. The normalized mutual information
between two clustering label vectors λ(a) and λ(b) can be
estimated by

φ(NMI)(λ(a), λ(b))

=

k∑
i=1

k∑
j=1

nij log
(

nijn

n
(a)
i

n
(b)
j

)
√√√√(

k∑
i=1

n
(a)
i log n

(a)
i

n

)(
k∑

j=1

n
(b)
j log

n
(b)
j

n

) (2)

where n
(a)
i is the number of objects in cluster i according to

λ(a), n(b)
j is the number of objects in cluster j according to λ(b),

nij is the number of objects that are in cluster i according
to λ(a) as well as in cluster j according to λ(b), and φ(NMI)

is a r × r symmetrical matrix and the diagonal elements are
ones because φ(NMI)(λ(a), λ(a)) = 1. Then, the average mutual
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TABLE II
PSEUDOCODE OF THE SCE ALGORITHM

information between the final clustering result λ∗ of the ensem-
ble and the component clustering results set Λ is computed by

φ(ANMI)(Λ, λ∗) =
1
r

r∑
j=1

φ(NMI)(λ(j), λ∗). (3)

The result with larger average mutual information is selected
from the results of MCLA and the voting approach as the final
decision.

The SCE algorithm is summarized in Table II.

V. EXPERIMENTAL STUDY

A. Performance Analysis on UCI Data Sets

To elucidate relative advantages of the SCE with respect to
single SC, the results of different algorithms on six data sets
from UCI machine learning repository [45] are presented first.

Performance of the SC depends on the selection of the
scaling parameter σ. On the following data sets, the high impact
σ on the SC is evaluated. It is also performed to compare the
SCE with the k-means clustering, the SC, and the SC using
Nyström method.

Iris data set is extensively used in classifier comparisons. It
consists of three types of Iris plants (Setosa, Versicolor, and
Virginica), with 50 instances per class, represented by four
features. It has one class (Setosa) linearly separable from the
remaining two classes, whereas the other two classes partially
overlap in the feature space.

Sonar data set consists of 208 instances, in which 111
instances are obtained by bouncing sonar signal off a metal
cylinder, and 97 instances were obtained from rocks. Each
instance is represented by 60 feature values.

Breast-cancer-W is the breast cancer data provided by the
University of Wisconsin hospitals. It consists of 699 instances
where 16 instances with missing feature values are removed.
Each instance is described by nine features and belongs to one
of two possible classes: benign or malignant.

Chess (kr-vs-kp) data set consists of 3196 instances which
could be classified into two categories (win or no win). Each
instance describes the board for this chess endgame using 36
features.

Segmentation data set consists of 2310 instances, drawn
randomly from a data set of seven outdoor images, brickface,
sky, foliage, cement, window, path, and grass. There are 330
instances per class, and each instance is represented by 19
features.

Pen digits data set consists of 10 992 instances. Each instance
with 12 features describes one of the handwritten numbers 0–9.

On the first five data sets, four algorithms are used for clus-
tering analysis: 1) k-means clustering; 2) the SC without ap-
proximation; 3) the SC using Nyström method; 4) the proposed
SCE. On the pen digits data set, the SC without approximation
is not performed because of large computational cost. The error
rates by matching the clustering results with the available label
vectors are computed to evaluate the final partitioning.

The k-means clustering is known to be sensitive to initializa-
tion. For comparison, we performed 50 runs of it with random
initial values of cluster centers, and retained only the result
with minimum error rates attained over these 50 experiments,
although a large variance on the error rates was observed. The
results are recorded in Table III.

For each data set, the SC is carried out with each value of σ
in the interval with the step length listed in Table III. Results
presented in Table III are the minimum error rates obtained.

The SC with Nyström method (SC_Nys) requires sampling
a part of data points in the approximation procedures. For each
data set, 50 data points are randomly sampled from the original
data set in the approximation method. The scale parameter
interval and the step length used are similar to those used
in the SC without approximation. 50 runs of this method are
performed. Note that the 50 data subsets sampled are fixed
for different parameter to investigate the influence of the scal-
ing parameter on the clustering performance. The results of
SC_Nys demonstrated in Figs. 2–5 are the average values of 50
runs of this method. Also, the minimum value of these averages
for each data set is listed in Table III.

The SCE combines 30 component SC_Nys. Each component
is carried out with a scaling parameter randomly selected in the
given interval listed in Table III. In SC_Nys, 50 data points are
randomly sampled in the approximation method. We perform
ten runs of SCE independently and plot the average values in
Figs. 2–5. Table III records the average error rate of the ten
runs for each data set also.

From the results of SC and SC_Nys on these data sets
shown in Figs. 2–5, it is found that the error rates of both
methods change with the scaling parameter greatly. Therefore,
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TABLE III
ERROR RATES OBTAINED BY THE k-MEANS: SC, SC_Nys, AND SCE

Fig. 2. Error rates of SC and SC_Nys with different scaling parameters, and
the error rate of SCE in the interval. (a) Iris data set. (b) Sonar data set.

the performance of SC and SC_Nys depends on the setting of
scaling parameter in practice.

In Fig. 2, the error rates of three methods, SC, SC_Nys, and
SCE on Iris and Sonar data sets, are demonstrated. From the
comparison, it is clear that SC is better than SC_Nys at some

Fig. 3. Average values and standard deviation of error rates by SC_Nys with
the changing of the scaling parameter on the Breast-cancer-W data set.

special points, and SCE obtained the best results over the given
parameter interval.

Fig. 3 shows the error rate curve of SC_Nys with the scaling
parameter in the interval [0.1, 2] with step length 0.02 on the
Breast-cancer-W data set. Each plot shows the mean and the
standard deviation over 50 runs of this method. The curve of
the average error rates shows that the performance of SC_Nys
changes with the scaling parameter. Large standard deviation
demonstrates the instability of SC_Nys. Certainly, the number
of randomly sampled data points also influences the error rates
and its standard deviation.

From the comparison results in Fig. 4, it is found that SC
outperforms SC_Nys with most of the scaling parameters in
the interval, and the performance of SCE is better than that
of SC and SC_Nys except at some special points. However,
these special points are difficult to be selected in practice.
Therefore, we can conclude that SCE is more efficient than SC
and SC_Nys in term of the stability to the scaling parameter.
The results in Fig. 5 illustrate this point further.

In addition, in order to investigate the influence of different
parameter intervals on the ensemble performance, we perform
SCE with different parameter intervals on Segmentation and
Pen digits data sets. The results are given in Fig. 5(a) and (b).
On the Segmentation data set, SCE is performed with the
intervals [1, 5], [5, 10], and [1, 10], respectively. Also, on the
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Fig. 4. Error rates of SC and SC_Nys with different scaling parameters, and
the error rate of SCE in the interval. The dashed denotes the standard deviation
of error rate by SCE. (a) Breast-cancer-W data set. (b) Chess data set.

Pen digits data set, the parameter intervals are [1, 2], [2, 5],
and [1, 5], respectively. From the results, we can find that the
clustering results of SCE with different parameter intervals are
comparatively stable, and the interval of the scaling parameter
slightly influences the performance.

Table III records the minimum error rates obtained by the
k-means, SC, SC_Nys, and the average error rates of ten runs
of SCE. It can be found that SCE using either MCLA or
voting algorithm outperforms the k-means clustering substan-
tially except for the Pen digits data set. In comparison to SC
with the accurately selected scaling parameter in the given
interval, SCE achieves the minimum error rates except for the
Chess (kr-vs-kp) data set. Furthermore, from the results of
these two combination methods, we found that the voting algo-
rithm works slightly better than MCLA for the data sets with
fewer classes including Sonar, Breast-cancer-W, and Chess
(kr-vs-kp). Also, for the data sets with more classes including
Segmentation and Pen digits data sets, MCLA performs better
than the voting algorithm. Therefore, for various data sets, using

Fig. 5. Comparison of clustering results of SC_Nys and SCE with the differ-
ent intervals of scaling parameter. The dashed denotes the standard deviation of
error rate by SCE. (a) Segmentation data set. (b) Pen digits data set.

TABLE IV
COMPUTATION TIME OF SINGLE RUN OF SC, SC_Nys, AND SCE ON THE

DATA SETS. TIME DENOTES THE CPU TIME IN SECONDS

the normalized mutual information to get the final result from
the two combination results is more reliable.

The computational cost of the algorithm was assessed via
running time on a personal computer with dual-core 1.86 GHz
Pentium IV processors, 1 GB memory, and Windows XP oper-
ating system, using programs written by Matlab 7.01. Table IV
shows the running time of different methods. The listed running
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Fig. 6. (a) Three-look simulated SAR image (256 × 256 pixels). (b) Ground truth. (c) Segmentation obtained by the k-means (error rate: 12.73%; the number
of misclassified pixels: 8342). (d) Segmentation obtained by SC_Nys (error rate: 4.02%; the number of misclassified pixels: 2635). (e) Segmentation obtained by
SCE (error rate: 3.84%; the number of misclassified pixels: 2516).

time of SC and SC_Nys is the average value to perform the
algorithm once. The time of SCE is for one trial. Obviously,
the number of component clusterings and the quantity of sam-
pled data points in each component SC_Nys would influence
the computation time of SCE. From the statistical results in
Table IV, we found that the running time of our algorithm is
constant multiple of that of SC_Nys. On the medium-scale data
sets including Chess (kr-vs-kp), Segmentation and Pen digits
data sets, our algorithm is faster than SC.

B. Segmentation of Simulated SAR Image

When we deal with real SAR images segmentation, the
ground truth corresponding to the SAR images being seg-
mented are absent generally. In this case, the evaluation of
the segmentation result is based on visual inspection of the
segmented images. In order to objectively evaluate the perfor-
mance of the segmenting method, an experiment on a simulated
three-look SAR image is carried out. The error rate is computed
by matching the segmentation result with the ground truth to
evaluate the method.

Following the work of Carincotte et al. [46], the generation
procedure of the simulated SAR image was inspired by radar
image formation phenomena. The ground truth image comes
from a two-class Gibbs field, as shown in Fig. 6(b), which is
used to calculate the error rates of the segmentations obtained
by different algorithms. The corresponding three-look noisy
image, as shown in Fig. 6(a), is generated by averaging three
independent realizations of speckle.

The texture features are not used in the segmentation of this
image for its generation previously mentioned. For each pixel,
a two-dimension feature vector is obtained by combining the
gray value and the spectral information estimated by eLL−1

of wavelet transform. Also, the features are scaled to the in-
terval [0, 1].

Three algorithms are used for segmentation, respectively:
1) the k-means clustering; 2) SC_Nys; 3) SCE. We performed
ten runs of k-means. Fig. 6(c) shows the segmentation result
with the minimum error rate of ten runs. Fig. 6(d) shows the
segmentation result of SC_Nys, which is the best one of all
results obtained by repeatedly performing the algorithm with
each parameter from the interval [1, 10] with step length 0.5.
One hundred pixels are sampled in the approximation method
of SC_Nys. In the application of SCE to image segmentation,
30 component SC_Nys are combined, and 100 pixels are sam-
pled in each component SC_Nys. The scaling parameter σ
for each component SC_Nys is randomly selected from the
interval [1, 10]. Fig. 6(e) shows the best segmentation result
among ten runs of SCE according to the error rate. However,
we found that the standard deviation of error rates over ten
runs of SCE for image segmentation is small, 0.21, which
demonstrates that our algorithm is stable for SAR image
segmentation.

Visually, the segmentation of the k-means, which is shown
in Fig. 6(c), is seriously spotty in consistent regions. Many
pixels in two classes are confused. SC_Nys performs better
than the k-means, as shown in Fig. 6(d). Therefore, SC_Nys
is more robust to the noise than the k-means. In the result, the
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Fig. 7. (a) Ku-SAR image in the area of Rio Grande River near Albuquerque,
NM (256 × 256). (b) Segmentation obtained by the k-means. (c) Segmentation
obtained by SC_Nys. (d) Segmentation obtained by SCE.

misclassified pixels mainly locate in the black regions of
Fig. 6(a), and the gray regions of Fig. 6(a) are well segmented.
Compared with SC_Nys, SCE reduces the number of the mis-
classified pixels, as shown in Fig. 6(e).

The overall error rates are reduced from 12.73% to 4.02% by
using SC_Nys and to 3.84% by using SCE. Therefore, SCE is
better than SC_Nys; SC_Nys and SCE outperform the k-means
clustering.

C. Segmentation of Real SAR Images

To demonstrate the applicability of the SC and the SCE
to real SAR image segmentation, experiments on three SAR
images are performed.

In the experiments, the segmentation result of k-means is
selected according to visual performance from ten runs of the
algorithm. SC_Nys is performed with each parameter in the
interval [1, 10] with step length 0.5. The final segmentation is
selected from multiple results visually. Since SCE is stable for
SAR image segmentation, we get the segmentation result by
performing the algorithm once.

The image, as shown in Fig. 7(a), is a part of a Ku-band SAR
image with 1-m spatial resolution in the area of Rio Grande
River near Albuquerque, NM. This image consists of three
types of land cover: water, vegetation, and crop.

The segmentation obtained by the k-means is shown in
Fig. 7(b). The boundary between the water and the vegetation
is not correctly defined, and the vegetation near the water is
classified as the crop. Furthermore, some local regions in the
water area are also misclassified. The segmentation obtained
by SC_Nys, as shown in Fig. 7(c), improves the uniformity in
the water region. However, there is serious misclassification in

Fig. 8. (a) X-SAR subimage of Switzerland (256 × 256). (b) Segmentation
obtained by k-means. (c) Segmentation obtained by SC_Nys. (d) Segmentation
obtained by SCE.

the vegetation region. SCE gets the best segmentation result, as
shown in Fig. 7(d). The boundaries of unique regions are well
defined, and three types of land cover are consistently identified
as corresponding regions. In particular, the only algorithm that
correctly identifies the small part of vegetation in the water
region is SCE.

Another experiment is carried out on a three-look X-band
SAR subimage of Switzerland obtained by Space Radar Lab-
oratory Missions in 1994, as shown in Fig. 8(a). The image
consists of three types of land cover: water, urban area, and
mountain. The left part of this image is the mountain area,
the water is on the top right, and the bottom right is the
urban area. Visually, it would be difficult to segment the urban
area and the mountain area in this image. The segmentation
obtained by the k-means clustering is shown in Fig. 8(b). The
water area is well separated. However, the boundary between
the water and the mountain is not well defined. Besides this,
a part of local regions in the mountain area are classified
as the water, and a small part of the mountain areas are
classified as the urban areas. Therefore, the k-means clus-
tering is not effective for this image. SC_Nys improves the
segmentation result to some degree, as shown in Fig. 8(c).
The water and the mountain areas are well distinguished. In
particular, the misclassified regions in the mountain area using
the k-means are segmented correctly. However, the urban area
is segmented badly by SC_Nys, because some regions are
misclassified as the mountain area. The segmentation of SCE
shows an effective segmentation result in comparison with
those of the k-means and SC_Nys, as shown in Fig. 8(d). The
uniformity in the urban area and the mountain area is im-
proved, and the mountain area and the water area are identified
as well.
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Fig. 9. (a) ERS-2 SAR image (256 × 254). (b) Segmentation obtained by
k-means. (c) Segmentation obtained by SC_Nys. (d) Segmentation obtained
by SCE.

The last experiment is carried out on a four-look second
European Remote Sensing Satellite (ERS-2) SAR image with
much speckle noise, as shown in Fig. 9(a). It consists of three
types of crops, represented by white, gray, and black. It is not
easy to visually identify some regions in this image. Fig. 9(b)
shows the segmentation obtained by the k-means. In Fig. 9(b),
the crop regions represented by white in Fig. 9(a) are seriously
misclassified as gray crop regions, particularly in the top of
Fig. 9(b). In the central area of Fig. 9(b), the gray crop regions
in Fig. 9(a) are misclassified as black crop regions. Also, in the
right of Fig. 9(b), the white crop regions are not well segmented
either. Some small white crop regions are misclassified as gray
crop regions. Compared with the k-means, SC_Nys produces a
better segmentation for the same areas in Fig. 9(c). However,
the white crop regions in the bottom right of Fig. 9(a) are still
not well defined in Fig. 9(c). In Fig. 9(d), SCE improved the
segmentation. The result of SCE is better than the result of
SC_Nys and greatly improved than the result of the k-means
in upper mentioned areas.

In the above experiments, to segment a SAR image of 256 ×
256 pixels, the average running time of single SC_Nys is
around 23.03 s, whereas SCE needs about 561.79 s. It seems
that SCE requires large running cost because the ensemble
combines lots of components. However, in the application of
SC_Nys, we need to perform many times of SC_Nys to select
the final result. The procedure requires multiple running time of
single SC_Nys. Therefore, the computation time cost of SCE is
comparable to that of the SC.

VI. CONCLUSION

We have developed an ensemble algorithm based on the SC
for the segmentation of SAR image. In comparison with the

k-means clustering, the SCE achieves better performance on
the cases we have studied. It also outperforms the SC with the
accurately selected scaling parameter in some cases. Further-
more, the SCE avoids the selection of the scaling parameter for
single SC.

The diversity is crucial for ensemble learning. From the
experiments, we found that diversity of the components can be
achieved by the strategies, which are mentioned in this paper.
However, how to evaluate the diversity of individual clustering
is a challenging problem. It is expected that using a diversity
evaluation to guide the ensemble construction will improve the
performance further.
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