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Working Set Selection Using Functional Gain for LS-SVM

Liefeng Bo, Licheng Jiao, and Ling Wang

Abstract—The efficiency of sequential minimal optimization (SMO) de-
pends strongly on the working set selection. This letter shows how the im-
provement of SMO in each iteration, named the functional gain (FG), is
used to select the working set for least squares support vector machine (LS-
SVM). We prove the convergence of the proposed method and give some
theoretical support for its performance. Empirical comparisons demon-
strate that our method is superior to the maximum violating pair (MVP)
working set selection.

Index Terms—Fast algorithm, least squares support vector machine (LS-
SVM), sequential minimal optimization (SMO).

I. INTRODUCTION

Support vector machines (SVMs) [1] are powerful tools for classifi-
cation and regression. Least squares support vector machine (LS-SVM)
[2] is a variant of SVMs which replaces the hinge loss function with
the squared loss function. When no bias term is used in the LS-SVM
formulation, similar expressions are obtained as with kernel ridge re-
gression [3] and Gaussian processes regression [4].

LS-SVM is formulated as convex quadratic programming with
equality constraint; hence, its solution is obtained by solving a set of
linear equations. Although this problem is, in principle, solvable, in
practice it is intractable for a large data set by the classical techniques,
e.g., Gaussian elimination, because their computational complexity
usually scales cubically with the size of training samples. To make
LS-SVM applicable to large scale problems, Suykens et al. [5]
presented a conjugate gradient (CG) algorithm. Chu et al. [6] gave
an improved conjugate gradient algorithm. Keerthi and Shevade [7]
proposed a sequential minimal optimization (SMO) algorithm where
the maximum violating pair (MVP) is selected as the working set.
Jiao et al. [8] developed a fast sparse approximation algorithm for
LS-SVM. Empirical comparisons [6], [7] have shown that SMO is
more efficient than CG and improved CG for the large scale data sets.

Inspired by [9] and [10], we present an improved working set se-
lection using functional gain (FG) for LS-SVM. It selects the variable
pair leading to a great functional gain as the working set. Although
the working set selection using functional gain is first proposed for
SVMs, intuitively, it is more natural for LS-SVM since it does not suffer
from the boundary effects caused by inequality constraints ensuring the
sparsity in SVMs. We prove that it achieves a greater or equal func-
tional gain than the MVP method. Experiments show that the proposed
method significantly reduces the training time of LS-SVM for large C
values.

II. WORKING SET SELECTION USING FG

Consider a classification or regression problem with training samples
fxi; yig

`

i=1 where xi is the input sample and yi is the corresponding
target. Note that the variables in bold face denote the vector. In the
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feature space, LS-SVM takes the form y = wT'(x) + b where the
nonlinear mapping '(x) maps the input data into a high-dimensional
feature space. To obtain a linear predictor, LS-SVM solves the fol-
lowing optimization problem:

min
1

2
w

T
w +

C

2

`

i=1

e2i

s.t. yi = w
T'(xi) + b+ ei; i = 1; . . . ; ` (1)

where C > 0 is the regularization parameter. Its Wolfe dual problem is

max D(���) = �
1

2

`

i;j=1

�i�j'(xi)
T'(xj)�

`

i=1

�2i
2C

+

`

i=1

�iyi

s.t.
`

i=1

�i = 0: (2)

The form '(xi)
T'(xj) in (2) is often replaced with a so-called pos-

itive–definite kernel function k(xi;xj) = '(xi)
T'(xj), which can

be expressed as the inner product of two vectors in some feature space
and, therefore, can be used in LS-SVM. The Lagrangian for (2) is

max
���;b

D(���)=�
1

2

`

i;j=1

�i�jk(xi;xj)�

`

i=1

�2i
2C

+

`

i=1

�iyi+�

`

i=1

�i :

(3)

Define

Fi = Fi(���) = �
j

�jk(xi;xj)�
1

C
�i + yi: (4)

The Karush–Kuhn–Tucker (KKT) conditions for the dual problem are

Fi + � = 0; for i = 1; 2; . . . ; `: (5)

Keerthi and Shevade [7] suggested using SMO algorithm to solve
(2). Its flowchart is shown in algorithm 1.

Algorithm 1: SMO algorithm for (2)

1) Set k = 0; ���k = 0, and Fk = F(���k) = y.

2) If the stop criterion is satisfied, stop. If not, select
p1 = argmaxi(F

k
i ) and p2 = argmini(F

k
i ).

3) Solve the following subproblem with the variable t

topt = argmax
t

�
1

2

�t

t

T
k(xi;xi) +

1

C
k(xi;xj)

k(xj ;xi) k(xj ;xj) +
1

C

�
�t

t
+

�t

t

T
F k
i

F k
j

:

4) Set �k+1
p = �k

p � topt; �k+1
p = �k

p + topt; F k+1
i =

F k
i + toptk(xi;xp )� toptk(xi;xp ); i 2 f1; . . . ; `g n fp1; p2g;

F k+1
p = F k

p + topt(k(xp ;xp ) + (1)=(C))� toptk(xp ;xp );
F k+1
p = F k

p + toptk(xp ;xp ) � topt(k(xp ;xp ) +
(1)=(C)), and k = k + 1; go back to step 2).

In the following, we will analyze the shortage of the MVP method
and present our method. Suppose (�i; �j) is the current working vari-
ables and �k+1

i = �k
i � t. Together with the equality constraint, we

have �k+1
j = �k

j + t. Thus, the functional gain of SMO in the current
iteration can be written as the following:

D(���k+1)�D(���k)

= gk(i; j) = max
t

�
1

2

�t

t

T

�
k(xi;xi) +

1

C
k(xi;xj)

k(xj ;xi) k(xj ;xj) +
1

C

�
�t

t
+

�t

t

T
F k
i

F k
j

(7)

Solving (6), we get

topt =
F k
j � F k

i

2

C
+ �(i; j)

(7)

where �(i; j) = k(xi;xi)+ k(xj ;xj)� k(xi;xj)� k(xj ;xi). Sub-
stituting topt into (6), we have

gk(i; j) =
F k
j � F k

i

2

2 2

C
+ �(i; j)

: (8)

The key observation is that the maximum violating pair only max-
imizes the numerator in (8) without considering the effect of �(i; j),
possibly leading to a small gain. For a very smallC , the effect of �(i; j)
can be ignored, so the MVP method is suitable. However, for a very
large C; �(i; j) plays an important role in the functional gain. Ideally,
we want to select the variable pair maximizing (8). Unfortunately, this
needs to evaluate (8) for all `(`� 1)=2 possible variable pairs, which
incurs a high computational cost. A simple alternative is to fix one vari-
able and find the other by maximizing (8). This results in the following
working set selection.

Algorithm 2: FGWSS (working set selection using functional gain)

1) Select v1 = argmaxi(abs(F
k
i )).

2) Select v2 = argmaxi(g
k(v1; i)).

Some theoretical properties of the proposed working set selection
are the following.

Theorem 1: For the same Fk , FGWSS always gives a greater or
equal functional gain than the MVP method.

Proof: There are two possibilities in step 1) of FGWSS. One is
v1 = argmaxi(F

k
i ) = p1 and the other is v1 = argmaxi(�F

k
i ) =

argmini(F
k
i ) = p2. For the former case, we have

gk(v1; v2) = max
i

(gk(v1; i))

� gk(v1; p2) = gk(p1; p2): (9)

For the latter case, we have

gk(v1; v2) = max
i

(gk(v1; i))

� gk(v1; p1) = gk(p2; p1) = gk(p1; p2): (10)

This completes the proof of Theorem 1.
Theorem 2: The sequence f���kg generated by SMO using FGWSS

converges to the global optimal solution of (2).
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TABLE I
COMPARISONS OF THE THREE ALGORITHMS ON THE MEDIUM AND LARGE SCALE DATA SETS. KERNEL DENOTES THE NUMBER OF KERNEL EVALUATIONS

(WITHOUT CONSIDERING THE CACHE) WITH EACH UNIT CORRESPONDING TO 10 EVALUATIONS. DUAL DENOTES THE DUAL OBJECTIVE

FUNCTION VALUE. TIME DENOTES THE TRAINING TIME WITH EACH UNIT CORRESPONDING TO 1 s

Proof: Combining (7) and (8), we have

D(���k+1)�D(���k) =
(topt)2 2

C
+ �(i; j)

2
: (11)

The positive–definite kernel function implies �(i; j) � 0. Together
with k���k+1 � ���kk22 = 2(topt)2, we have the following:

D(���k+1)�D(���k) �
k���k+1 � ���kk22

2C
: (12)

Inequality (12) implies that fD(���k)g is a decreasing sequence. To-
gether with D(���k) > �1, we have that fD(���k)g converges. Ap-
plying (12) again, we get that f���k+1 � ���kg converges to 0.

Since D(���) is a positive–definite quadratic form, the set
f��� jD(���) � D(���0)g is a compact set. f���kg lies in this set, so
it is a bounded sequence. Let ���� be the limit point of any convergent
subsequence f���kg; k 2 �. Since there are only a finite number of
variables, there exists at least one working set fv1; v2g which occurs

infinitely in this subsequence. Let �� � � be the set of the superscripts
corresponding to fv1; v2g; then, we have

Fv (����)� Fv (����) = lim
k!1;k2�

(Fv (���k)� Fv (���k)): (13)

According to [7, Lemma 1], (13) can be decomposed into

Fv (����)� Fv (����) = lim
k!1;k2�

(A1(k) + A2(k) + A3(k)) (14)

where A1(k) = Fv (���k) � Fv (���k+1); A2(k) = Fv (���k+1) �
Fv (���k+1),and A3(k) = Fv (���k+1) � Fv (���k). From step 4) of
SMO, we know

A2(k) = 0: (15)

Since f���k+1 � ���kg converges to 0, limk!1;k2� A1(k) = 0 and
limk!1;k2� A3(k) = 0. Thus, we get

Fv (����)� Fv (����) = 0: (16)
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According to Theorem 1, we have

Fv (���k)�Fv (���k)
2

2 2

C
+�(v1; v2)

�
Fi(���

k)�Fj(���
k)

2

2 2

C
+�(i; j)

8i; j 2 f1; . . . ; `g:

(17)

Considering the limit of (17), we get

(Fi(����)� Fj(����))
2

= ( lim
k!1;k2�

(Fi(���
k)� Fj(���

k)))2

�
2 + C�(i; j)

2 + C�(v1; v2)
lim

k!1;k2�
(Fv (���k)� Fv (���k))

2

=
2 + C�(i; j)

2 + C�(v1; v2)
(Fv (����)� Fv (����))2

= 0 8i; j 2 f1; . . . ; `g: (18)

Equation (18) implies F1(����) = F2(����); . . . ;= F`(����). From the
KKT conditions, ���� is the global optimal solution of (2). Since D(���) is
strictly convex, (2) has a unique global optimal solution and we denote
it as ����. Assume that f���kg does not converge to ����. Then, 8� > 0,
there exists an infinite subset � such that k���k � ����k > �; 8k 2

� . Because f���kg; 8k 2 � is a compact set, there is a convergent
subsequence. Without loss of generality, we assume its limit to be ����.
Thus, we have k���������k > �. Since ���� is the global optimal solution of
(2), this contradicts that ���� is the unique global optimal solution. The
proof of Theorem 2 is completed.

III. EMPIRICAL STUDY

In order to evaluate the performance of the proposed method, we
compare it with SMO and improved CG on four benchmark data sets.
All the three algorithms are implemented in VC++ 6.0 and are run
on a personal computer with 2.4-GHz processors, 1.5-GB memory and
Windows XP operation systems. The size of the cache is set to 800 MB.
The optimization process is terminated when the maximal violation of
the KKT conditions is within 0.001.1 For the regression data sets, both
the input and the output are scaled into the interval [�1; 1].

The Gaussian kernel k(xi;xj) = exp(�kxi � xjk
2

2=2�
2) is used

to construct LS-SVM. For Adult4 and Adult7 data sets, the values of�2

are the same as in [11]. For Bank8fh and House8l data sets, the values
of �2 are determined by the tenfold cross validation on a small random
subset.

Table I reports the number of kernel evaluations and the training
time of CG, SMO using MVP, and SMO using FG. As we can see, our
method beats its competitors and achieves the better performance on
the cases we have studied. Our method significantly outperforms CG,
in particular, for the large scale data sets. At the small C values, our
method exhibits similar performance with the MVP method; however,
at the large C values, our method significantly outperforms the MVP
method. The discussions below (8) explain the reason. Note that for
medium scale problems, the whole kernel matrix can be fitted into the
cache, so the real number of kernel evaluations is at most `2, which
explains why the training time does not match the number of kernel
evaluations shown in Table I.

1The source code for our method is available at http://see.xidian.edu.cn/grad-
uate/lfbo/. The classification data sets Adult4 and Adult7 come from
http://www.reasearch.microsoft.com/~jplatt/smo.html. The regression data sets
Bank8fh and House8l can be accessed at http://www.liacc.up.pt/~ltorgo/Re-
gression/DataSets.html

IV. CONCLUSION

In this letter, we have proposed a new method for selecting the
working set for LS-SVM and proved its asymptotic convergence.
Our method effectively utilizes the functional gain information and
achieves fast convergence. Empirical comparisons demonstrate that
the new algorithm is significantly faster than other existing algorithms.
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