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Training Hard-Margin Support Vector Machines
Using Greedy Stagewise Algorithm
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Abstract—Hard-margin support vector machines (HM-SVMs)
suffer from getting overfitting in the presence of noise. Soft-margin
SVMs deal with this problem by introducing a regularization term
and obtain a state-of-the-art performance. However, this disposal
leads to a relatively high computational cost. In this paper, an al-
ternative method, greedy stagewise algorithm for SVMs, named
GS-SVMs, is presented to cope with the overfitting of HM-SVMs
without employing the regularization term. The most attractive
property of GS-SVMs is that its computational complexity in the
worst case only scales quadratically with the size of training sam-
ples. Experiments on the large data sets with up to 400 000 training
samples demonstrate that GS-SVMs can be faster than LIBSVM
2.83 without sacrificing the accuracy. Finally, we employ statistical
learning theory to analyze the empirical results, which shows that
the success of GS-SVMs lies in that its early stopping rule can act
as an implicit regularization term.

Index Terms—Classification, greedy stagewise algorithm, sup-
port vector machines (SVMs), Vapnik—Chervonenkis (VC) dimen-
sion.

I. INTRODUCTION

ARD-MARGIN support vector machines (HM-SVMs)

have a risk of getting overfitting in the presence of noise
[1], [2]. To deal with this problem, soft-margin SVMs [3], [4] in-
troduce the regularization parameter that allows some training
error to obtain large margin. This is a highly effective mech-
anism for avoiding overfitting, which leads to good general-
ization performance. Though very successful, we can identify
shortcomings of soft-margin SVMs.

1) The training procedure of soft-margin SVMs amounts to
solving a constrained quadratic programming. Although
the training problem is, in principle, solvable, in prac-
tice it is intractable by the classical optimization tech-
niques, e.g., interior point method, because their com-
putational complexity usually scales cubically with the
size of training samples.

2) The regularization parameter depends on the task at
hand; hence, there is no foolproof method for deter-
mining it before training. Usually, we have to resort to
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a cross-validation procedure that is wasteful in compu-
tation [5].

In the past few years, many fast iterative algorithms were pre-
sented to cope with problem 1). Chunking algorithm [6] splits
the variables into inactive and active sets (also named working
set). At first, an arbitrary subset of the variables is selected as the
working set. After a general optimization algorithm, e.g., inte-
rior point method is applied to the subset, the support vectors
in the working set are reserved and the rest are replaced with
the variables that violate Karush—Kuhn-Tucker (KKT) condi-
tions. However, this algorithm still is inapplicable in case the
number of support vectors is very large due to high memory re-
quirement. Joachims [7] identified this shortage and developed
an efficient decomposition scheme, named SVM!g"* | The key
idea of SVM!81t ig to find a feasible direction of steepest de-
scend, in which the number of nonzero elements is set to be a
small constant. Platt [8] took the decomposition idea to an ex-
treme where the size of the working set of sequential minimal
optimization (SMO) algorithm is set to be two and hence an an-
alytical solution for subproblem is obtained. Keerthi et al. [9]
and Shevade et al. [10] further improved the performance of
SMO by introducing the maximal violating pair working set se-
lection. Hastie et al. [11] derived an algorithm that can fit the
entire path of SVM solutions for every value of the regulariza-
tion parameter. Some other examples include Kernel-Adatron
[12], SimpleSVM [13], SVMTorch [14], and so on.

Recently, there have been many attempts to approximately
train SVMs. Collobert et al. [15] proposed a parallel mixture of
SVMs. Dong et al. [16] introduced a parallel optimization step
to quickly remove most of the nonsupport vectors for speeding
up SVMs. Bakir et al. [17] selectively removed training sam-
ples using probabilistic estimates related to editing algorithms.
Bordes et al. [18] presented an online algorithm to compute
an approximation solution of SVMs. Tsang et al. [19] showed
that many kernel methods can be equivalently formulated as
minimum enclosing ball problems in computational geometry
and presented core vector machine (CVM) to compute the
approximate solution of SVMs. Keerthi et al. [20] built sparse
SVMs using a matching pursuit-like algorithm. These algo-
rithms proved to be effective and boosted the development of
large scale SVMs.

Based on a preliminary work [21], a greedy stagewise al-
gorithm for approximately training SVMs (GS-SVMs) is pre-
sented to deal with the overfitting of HM-SVMs. Instead of em-
ploying the regularization term, GS-SVMs attempt to control
the complexity of the hypothesis space by themselves. They it-
eratively build the decision function by adding one kernel func-
tion at one time. At each iteration, GS-SVMs determine the
index and the weight of the new kernel function to be included
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by an optimization problem in two variables, whose solution
can be obtained in closed form. This procedure is repeated until
the loss function stops decreasing. The proposed algorithm pos-
sesses the two following attractive properties.

1) The computational complexity of GS-SVMs is O (nf),
where n is the number of support vectors and / is the
number of training samples. Even in the worst case of
all the training samples being the support vectors, the
computational complexity is only O (¢2).

2) No extra regularization parameter is required.
Extensive empirical comparisons validate the efficiency and
effectiveness of GS-SVMs. Moreover, we employ statistical
learning theory to analyze the empirical results, which shows
that the success of GS-SVMs lies in that their early stopping
rule can act as an implicit regularization term.

This paper is organized as follows. In Section II, a brief
introduction of SVMs is given. The reason that the dual of
HM-SVMs can be regarded as a loss function is interpreted in
Section III. GS-SVMs is detailed in Section IV. Experiments
which demonstrate the speed and generalization performance
of GS-SVMs are given in Section V. In Section VI, we explore
the reason for the success of GS-SVMs. In Section VII, the
contributions of this paper are summarized and the further
research direction is indicated.

II. SUPPORT VECTOR MACHINES

In this section, we briefly introduce SVMs. For more details,
the interested reader can refer to [22] and [23]. In classification,
we are given a set of training samples {x;, yi}le, where x; is
the input sample defined on R?, y; is the corresponding output,
and £ is the number of training samples. The aim is to determine
an approximation function f (x) of the target function f* (x),
which best represents the relationship between the inputs and
the outputs. In the feature space, SVMs model takes the form
f (x) = wT® (x) where the nonlinear mapping  (x) maps the
input data into a higher dimensional feature space whose dimen-
sion can be infinite. We have also dropped the threshold b for the
sake of simplicity. The generalization performance of SVMs
usually is not affected by this drop in most cases (one should
be cautious with very unbalanced data sets where the threshold
can be helpful). To obtain a classifier, HM-SVMs solve the fol-
lowing optimization problem:

B ST
min = ||w||
2

st oy (< w,®(x;) >) > 1, i=1,...,0. (1)

Its Wolfe dual is

¢ ¢
1 T
min | 5 Z a;oyiy P(xi)” @ (x5) — Z a;
1,7=1 =1
st. 0< ay, 1=1,... L 2)
According to Mercer’s theory [24], any positive—definite
kernel function K (x;,X;) can be expressed as the inner product

of two vectors in some feature space, and therefore, it can be
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used in SVMs. Replacing ®(x;)" @ (x;) with K(x;,x;), we
get

;L ¢

min 3 421 ;oYY K (x4, %) — z; Q;

ij= i=

s.t. 0<aqy, i=1,...,4 3)

To deal with the nonseparable case, one often uses
soft-margin SVMs

‘ ‘
1
min 3 Z aiogyiy; K (i, %) — Zai

ij=1 i=1

st. 0<a; <C, 1=1,...,0. 4)
For a new sample x, we can predict its label by
14
f(x) =sgn (Z oy K (%, Xi)) (5)
i=1

where «; is the solution of (4).

III. RKHS NORM VIEW FOR SVMSs

The key conclusion in this section is that the Wolfe dual of
HM-SVMs can be regarded as the loss function induced by a
reproducing kernel Hilbert space (RKHS) norm, which is the
basis of developing greedy approximation algorithms. Similar
conclusion about support vector regression is reported by Girosi
[25].

Theorem 1 [24]: Let X C RY, a real symmetric function
K (x,y), x,y € X be positive—definite symmetric if and only
if for every set of real numbers {1, aa, . . ., ¢ } and every set of
vectors {x1,Xa, ..., X}, we have Zf =1 a0 K (x;,%x5) > 0.

Definition 1 [24]: A Hilbert space’H of function f : X —
R, X # , is called an RKHS with dot product (e, )y and
norm || f||; = +/(f, f) g if there exists a function K : X x
X — Rsatisfying < f (o), K (o, x) >g = f (x) and spanning
H,ie., H=span{K (e,x),x € X}.

We call ||f||; = +/(f, )y, where f € H, reproducing
norm. RKHS Hy induced by K (x,y) satisfies the following
three properties:

1) K (e,x) € Hg where x € X

2) Zle ;K (e,%x;) € Hg, where «; and { are finite;

3) for f(e) € Hrg,x € X, < f(o),K (0,x)>y =
[ (x), where (e, @) is the inner product of RKHS. In
particular, < K (e,%;) , K (0,x;) >n = K (x;,%;).

According to the property 2), we can derive that the decision
function of SVMs, f (x), belongs to RKHS Hy. We assume
that the unknown target function f* (x) belongs to RKHS Hp.
Measuring the distance by RKHS norm between the target func-
tion f* (x) and the approximation function f(x), we have the
following loss function:

2

¢
o (x) - Z iy K (X, %)
=1 H

i=1,2,...,0

1
2

st. a; >0, (6)
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Fig. 1. Visualization of the solution.

where || o || is RKHS norm. Equation (6) can be expanded as

SF (0 K (xx))n

||H Zazyz X )
[
Z

1=

1
st. a; >0, 1,2,...,L 7)

_|_

MN

l\DIH

QY Y5 K(XJQ),K(X, Xj))H

S,
I

Using the reproducing property 3) of kernel function, we can
transform (7) into

l 4
||H Zazyt Xi %ZZ a0y K (xi,%5)

i=1,...,L (8)

1
§||f
s.t. a; Z 07

Since f* (x;) is the output of target function on the point x;, it is
reasonable to estimate it by y; (for noiseless data, f*(x;) = v;).
Thus, we have

1
§||f “H ZOQ + = ZZ%O@%% X“Xj)
i=1 j=1
st. a; >0, z:l,...,ﬁ. )
Eliminating the constant term, we can estimate «;, i = 1,...,/
by
1L ¢
3 SN iy K (xi %) = Y o
i=1 j=1 i=1
st 0 < ay, i=1,...,¢. (10)

Itis easily checked that (10) completely amounts to (5), which
enlightens us to take the Wolfe dual of SVMs as the loss func-
tion induced by RKHS norm. If we further constrain «;,
1,...,£ smaller than C, we can obtain soft-margin SVMs.

7 =

IV. GREEDY STAGEWISE ALGORITHM FOR SVMS

Though (10) is, in principle, solvable by the classical op-
timization techniques, in practice, it suffers from two serious
problems: 1) its computational complexity usually scales cubi-
cally with the size of training samples; and 2) there often is a
risk of getting overfitting due to no regularization term.

In this section, we will deal with the aforementioned
two problems by GS-SVMs which attempts to fast approx-
imate (10) while avoiding the overfitting. The dictionary
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D = {k(x,x;)]i =1,2,...,¢} used by GS-SVMs is a set
of the kernel functions centered on the training samples.
GS-SVMs iteratively build the decision function by adding
one kernel function at a time. At each iteration, GS-SVMs
determine the index and the weight of the next kernel function
to be included by an optimization problem in two variables.
This procedure is repeated until the loss function (10) stops
decreasing.

There are many efforts for greedy learning algorithms. In gen-
eral, the existing methods can be roughly classified into two
groups. The first group is called greedy stepwise approach that
readjusts the weights of the previously entered basis functions
when a new basis function is added. The typical algorithms in-
clude orthogonal least squares learning algorithms [26], kernel
matching pursuit (backfitting and prefitting version) [27], fast
sparse approximation for least square SVMs [28], and so on.
The second group is called greedy stagewise approach that fixes
the weights of the previously entered basis functions when a new
basis function is added. The typical algorithms include matching
pursuit [29], AdaBoost [30], LogitBoost [31], Doom II [32],
gradient boosting [33], leveraged vector machines [34], and so
on.

Our algorithm can be classified into the second group. The
most important difference among the algorithms in the second
group is the loss function they optimize. Matching pursuit uses a
squared loss function; AdaBoost and leveraged vector machines
use an exponential loss function; LogitBoost uses a negative bi-
nomial log-likelihood; Doom II uses a margin loss function in-
duced by hyperbolic tangent function; however, GS-SVMs use
the dual of HM-SVMs as a loss function. The reason that the
dual of HM-SVMs can be regarded as a loss function can be
found in Section III. Another major difference is caused by the
basis functions. In previous boosting algorithmes, it is a tradition
that the basis functions are trees and hence the weights corre-
spond to features. An exception is leveraged vector machines
which share a similar idea with GS-SVMs and build kernel
machines by greedy stagewise algorithm. In GS-SVMs, whose
basis functions are the kernel functions centered on training
samples, the weights correspond to samples.

General greedy stagewise algorithm [33] can be described as
the following. Form = 1,2,...¢

4
(s Brn) = arg min <;L(m7 fm—1(%i) + oK (mm)))
st. B# B, (11

and then

j=1,2,..m—1

fm (X> =

where L (e, ®) denotes the loss function, fy = 0 and the occur-
rence of the constraint terms means that each kernel function is
selected once at most. The constraint guarantees that the effect
of some kernel function is not excessively magnified, which is
an effective mechanism for avoiding overfitting. On the other
hand, it causes our algorithm to only obtain an approximation
solution. This is not the case for the boosting algorithms, which
allow modifying the same parameter several times and actually
can converge to the minimum of their loss function.

fmfl <X> + amK (X7 Xﬁm) (12)
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A key observation is that the solution for this two-variable
optimization problem in SVMs can be obtained in closed form.
For the loss function in SVMs, (11) can be formulated as

(s Bin)
1 m—1m—1
= argmin <§ Z D sy s K (x5,,%g,)
=1 j=1
m—1 m—1
> aptays > asys K (x5,,%5)
=1 =1
L,
+50 K (x,Xp) —
st. a>0. B#8, j=12..m—-1  (13)
Eliminating the constant term in (13), we have
(s Bin)
Y
= argmin | co K (xg,%3)
m—1
+a (y,ﬁ > apys K (xs,,%5) —1))
i=1
s.t. a>0, B # B, i=12,...m—1. (14)
Define the gradient vector
-1, ifm=20
95 = s 3 am s K (x5, %x5) — 1, ifm>1. (19
k=1
We can reformulate (14) as
(s ) = axgmin (507K (5,%5) + g™
O, fm) = argmin { S0 K (xp, %) + ag
st. a>0, B # Bj, 7=12...m—1.
(16)

Equation (16) can be solved in two steps. In the first step, we
fix 0 and compute the minimal value hg”_l of (16) with respect
to «. In the second step, we compute (3,,, by minimizing hg’_l
with respect to 3, and then compute «,,, in terms of 3,,,. Fixing
(3, we have the subproblem

1
min <§o¢2K (xg,%8) + ozgg]’_1>

st. a>0. (17)
Since (17) is a single variable quadratic programming, we can

give its analytical solution (see Fig. 1)

m—1 m—1

gy . 95
— , if —

ag = K(xp.xp)’ K(:Liulxﬁ) (18)
0, if— 72

K(Xﬂ,xg) - 0
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TABLE I
CHARACTERISTICS OF THE DATA SETS AND THE
VALUE OF KERNEL PARAMETER

Problems 6 (SVMs) 0 (GS-SVMs) Dim Size
Adult-1 0.05 0.05 123 1605
Adult-4 0.05 0.05 123 4781
Adult-7 0.05 0.05 123 16100
Web-1 0.05 0.10 300 2477
Web-4 0.05 0.10 300 7366
Web-7 0.05 0.10 300 24692

According to the positive—definite property of kernel function,
we have K (X’g7 X’g) > 0. Thus, (18) can be further simplified as

m—1

_ 93 . m—1
o= Koy 195 <0 (19)
0, if gy ' > 0.
Combining (17) and (19), we get
1
" = min (5“2K (x3,%0) + g )
(9;71)2 e om—1
_ | ~ertaxy g5 <0 (20)
0, ifgy ="' >0.

Considering (19) and (20), we can obtain the parameter pairs
(@m, Bm) by the following:

3, = arg min (hm_l) .

Bm gﬂGQ 8
9

K (x,,,%p,,)

2L

(22)

Xy = —

From (20), we can see that if each of unselected training samples
satisfies gghl > 0, the loss function (10) stops decreasing, so
GS-SVMs should terminate. Accordingly, the greedy stagewise
algorithm for SVMs is shown in algorithm 1.

Algorithm 1: GS-SVMs

1. Set fo(x) =0, =0,g° = -1, h% = -1,
Q=1{12,...4}, P =T,

2. Form = 1to /4, do:

3. If glelg (ggnfl) > 0, stop;

4. B = arg}ineig (hgfl), Uy = —ggf:l/]( (xg,,,Xs,, )
P=PU{Bfn}.Q=Q—{Bnk

95 =95+ amysyp, K (x5,%p,.)
Update h@mfl, € @ according to (20);
8. fm(X) = fm-1(x) + am K (x,%p,,):
9. End For

10. End Algorithm

BeQ;

N o w
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TABLE II
COMPARISONS OF GS-SVMS AND LIBSVM 2.83. SV DENOTES THE NUMBER OF SUPPORT VECTORS; ERROR DENOTES THE MISCLASSIFICATION RATE (PERCENT);
K1 DENOTES THE NUMBER OF KERNEL FUNCTION EVALUATIONS WITH USING THE CACHE WITH EACH UNIT CORRESPONDING TO 109 KERNEL FUNCTION
EVALUATIONS; K2 DENOTES THE NUMBER OF KERNEL FUNCTION EVALUATIONS WITHOUT USING THE CACHE WITH EACH UNIT CORRESPONDING
TO 10° KERNEL FUNCTION EVALUATIONS; AND TIME DENOTES THE RUNTIME WITH EACH UNIT CORRESPONDING TO 1 s. REGULARIZATION
PARAMETER C' IS SET TO BE 2 AND 4 FOR ADULT AND WEB DATA SETS, RESPECTIVELY

Problems LIBSVM 2.83 GS-SVMs
SV Error K1 K2 Time SV Error K2 Time
Adult-1 679 15.7 1.1 32 0.4 650 15.9 1.0 0.3
Adult-4 1872 15.5 9.6 13.9 3.7 1735 153 83 2.7
Adult-7 5878 15.1 102.7 130.3 51.9 5461 15.0 87.9 28.1
Web-1 441 2.0 1.1 5.5 0.4 325 2.6 0.8 0.2
Web-4 907 1.6 7.1 24.5 24 719 1.9 53 1.5
Web-7 2017 1.2 52.9 134.9 18.0 1724 1.5 42.6 11.6

TABLE III

COMPARISONS OF GS-SVMs AND LIBSVM 2.83 FOR THE DIFFERENT REGULARIZATION PARAMETERS. THE DEFINITION OF K1, K2, AND TIME
IS THE SAME AS IN TABLE II

Algorithm ¢ K1 A(Elg ! Time K1 leg ! Time
GS-SVMs 88 88 28 43 43 12
26 128 128 66 47 55 15
24 113 116 43 51 60 15
272 106 109 54 54 70 16
20 103 112 52 53 87 17
LIBSVM 2.83 22 103 177 71 53 135 18
24 110 531 64 51 186 18
26 117 1664 109 48 243 17
28 117 4103 159 46 262 17
10 116 9156 309 45 260 16

A special case is Gaussian kernel that satisfies K (x,x) = 1,
which allows us to simplify (20) as

1
m—1 __ : 2 m—1
hig™" = min (5(1 K (x5,%3) + agj )
(92171)2 e om—1
0, if g~ > 0.

According to SVMs, we call the samples corresponding to
nonzero weights as support vectors. It is easily checked that the
computational complexity of GS-SVMs is only O(nf), where n
is the number of support vectors.

V. EXPERIMENTS

In this section, we investigate the properties of GS-SVMs
on various data sets and compare them with HM-SVMs
and soft-margin SVMs. Gaussian kernel K(x;,X;)
exp(—0||x; — x; ||§) is used to construct classifiers. Soft-margin
SVMs are trained using LIBSVM 2.83 [35], which implements
the improved SMO algorithm. HM-SVMs are constructed using
MOSEK optimization toolbox, since SMO works inefficiently
for HM-SVMs. All the experiments are run on a personal
computer with 3.2-GHz P4 processors, 2-GB memory, and
Windows XP operation system. The size of the cache is set
to be 1 GB. The optimization process is terminated when the
maximal violation of the KKT conditions is within 0.001. For
fair comparison, GS-SVMs also use the sparse representation

of training samples as LIBSVM 2.83. The shrinking is used if
no further explanation is given.

A. Comparison With LIBSVM 2.83 on Adult and Web Data Sets

In order to validate the speed of GS-SVMs, we compare it
with LIBSVM 2.83 on Adult and Web data sets.! The charac-
teristics of the data sets and the value of kernel parameter are de-
scribed in Table I. In the first experiment, we fix C' at a suitable
value, which gives good generalization performance. The re-
sults are shown in Table II as functions of the number of training
samples. In the second experiment, we vary C' over a wide range.
The results are shown in Table III as functions of C'

As we can see, the number of kernel evaluations of GS-SVMs
is smaller than that of LIBSVM 2.83 on the two data sets.
LIBSVM 2.83 benefits from the large cache size. Many ex-
pensive kernel evaluations are avoided since the entities of the
kernel matrix can be accessed from the cache when needed
again. However, for the large scale data sets, it is hopeless to
fit the larger part of the kernel matrix to the cache, because the
space requirement for the kernel matrix grows quadratically
with £. We will illustrate this point in the next section.

From Tables II and III, GS-SVMs are consistently faster than
LIBSVM 2.83 on the two data sets, especially for the large
C values where the runtime of LIBSVM 2.83 has a sharp in-
creasing. If grid search is used for the selection of free parame-
ters, the number of the trainings of GS-SVMs is significantly

! Available at http://research.microsoft.com~jplatt/
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TABLE 1V
COMPARISONS OF GS-SVMS AND LIBSVM 2.83 ON FOREST DATA SET. THE DEFINITION OF SV, ERROR, K1, K2, AND TIME IS THE SAME AS IN TABLE II.
For K1 AND K2, EACH UNIT CORRESPONDS TO 10° KERNEL FUNCTION EVALUATIONS

Problems GS-SVMs LIBSVM 2.83
SV Error K2 Time SV Error K1 K2 Time
20000 17923 12.4 04 109 18561 13.1 1.7 0.9 331
40000 30894 89 1.2 384 33197 8.5 72 6.7 2277
60000 40722 7.0 2.4 731 44401 6.5 16.5 15.5 5343
80000 48346 6.0 3.9 1184 53546 54 29.3 27.3 8938
100000 54831 53 56 | 1879 | 60921 47 | 454 41.8 13675
TABLE V TABLE VI
COMPARISONS OF GS-SVMS AND OTHER EXISTING ALGORITHMS. SIZE CHARACTERISTICS OF BENCHMARK DATA SETS
DENOTES THE NUMBER OF TRAINING SAMPLES. THE DEFINITION
OF SV, ERROR, AND TIME IS THE SAME AS IN TABLE II Problems Size Class Dimension
Australian Credit 690 2 15
Algorithms Size Error Time SV German 1000 2 20
Dong et al’s algorithm 435756 10.4 6240 N/A Glass 214 6 9
Collobert et al’s Heart 270 2 13
algorithm 400000 361 1020 N/A Ionosphere 351 2 34
Core vector machines 400000 2.35 24369 42182 Iris 150 3 4
GS-SVMs 400000 2.60 15449 103658 Liver disorders 345 2 6
Pima Indians Diabetes 768 2 8
. . Segment 2310 7 18
fewer than that of SVMs since GS-SVMs do not require se- Vowel 528 11 10
lecting the regularization parameter. For example, if we try ten Wdbe 569 2 30
different values for C and 6 and perform tenfold cross valida- Wine 178 3 13
. hen GS-SVM | . .. 100 6 h 700 101 7 10
tion, then - s only ?equlre retraining : .tlmes, OW- Page 5473 4 10
ever, SVMs do that 1000 times. Hence, the training speed of Splice 3175 3 240
GS-SVMs is significantly more times faster than that of SVMs. Dna 2000/1186 3 180
Also, we can see that the test errors of GS-SVMs and LIBSVM Letter 15000/5000 26 16
. Satimage 4435/2000 6 36
2.83 are very close. Thus, we have the conclusion that GS-SVMs Shuttle 43500/14500 9 7

are significantly faster in speed than LIBSVM 2.83 and compa-
rable in generalization performance with LIBSVM 2.83.

B. Comparison With the Existing Algorithms
on Forest Data Set

To know the behavior of GS-SVMs on very large data sets,
we test the proposed algorithm on Forest data set [36]. The data
set contains 581 012 samples with seven classes. The dimen-
sion of samples is 54. We look only at the binary classification
problem of differentiating class 2 from the rest. We randomly
select 100 000 samples as the training set and 50 000 samples as
the test set.

To get good free parameters, we first choose two small sub-
sets: one for training and the other for validation. The parame-
ters are tuned on the validation set. Then, the parameters § =
1/10000 and C 10 are obtained for SVMs and the pa-
rameter # = 1/10000 is obtained for GS-SVMs. This group
of data sets covers a wide range of kernel matrix size, which
fits into the cache by nearly 30% to only 1%; hence, in most
cases, we have to reevaluate the kernel function when some en-
tity of the kernel matrix is needed. Table IV shows the results
of GS-SVMs and LIBSVM 2.83 as functions of the number
of training samples. We can see that the generalization perfor-
mance of GS-SVMs and LIBSVM 2.83 is close, however the
training time of GS-SVMs is much less than that of LIBSVM
2.83. Note that the shrinking does not apply to Forest data set
since it increases the training time of LIBSVM 2.83.

Since different divisions of training and test sets are used in
the benchmark test, it is not easy to compare the performance of
the different algorithms fairly. Here, we give Collobert et al.’s

[14] and Dong et al.’s [16] results for reference. Dong ef al. ran-
domly divided the full data set into 435 756 training samples and
145 256 test samples. Then, they trained SVMs on some subsets
using the parallel techniques and uniformly combined the out-
puts of these SVMs to make a final decision. Dong et al.’s ex-
periments were conducted on a PC with single intel P4 1.7-GHz
processor with 256-k L2 (second-level) cache, SDRAM. The
total training time was about 6240 s. The test error was 10.4%
for class 2 and the rest. Collobert considered the same binary
classification. Their training and test sets consisted of 100000
and 50000 samples, respectively. The experiments were con-
ducted on the cluster with 50 Athlon 1.2-Ghz central processing
units (CPUs). The test error was about 9.3% for the hard mix-
ture of SVMs and the total training time was 2220 s. When the
size of the training set was increased to 400 000 and the local
experts were changed to multilayer perceptrons (MLPs), rather
than SVMs, the hard probability mixture of MLPs achieved
5.6% test error on the binary classification, and the training time
was 1020 s.

For comparison, we also run GS-SVMs and core vector
machines [19] on 400 000 training samples and the results are
shown in Table V. It is observed that GS-SVMs are very com-
petitive with the existing approximation algorithms. GS-SVMs
are comparable with CVM and superior to the other two
algorithms in terms of the generalization performance. The
runtime of Collobert et al.’s algorithm is less comparable with
the other three algorithms because it exploits the significantly
faster machine. The runtime of Collobert ef al.’s algorithm
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TABLE VII
ERRORS OF GS-SVMSs, HM-SVMS, AND SVMS ON BENCHMARK DATA SETS. THE RESULTS OF THE BEST METHOD AND OF ALL OTHER METHODS WITH NO
SIGNIFICANT DIFFERENCE (THE SIGNIFICANT LEVEL> 0.05) ARE SET IN BOLDFACE. NOTE THAT PAIRWISE TWO-TAILED ¢-TESTS
ARE NOT APPLIED OVER DNA, LETTER, SATIMAGE, AND SHUTTLE

Problems GS-SVMs HM-SVMs SVMs

Australian Credit 0.1507 0.2145 0.1551

German 0.2580 0.3070 0.2460

Glass 0.2846 0.3134 0.3319

Heart 0.1630 0.2333 0.1677

Ionosphere 0.0600 0.0600 0.0598

Iris 0.0467 0.0800 0.0400

Liver disorders 0.3397 0.3831 0.2871

Pima Indians Diabetes 0.2279 0.2945 0.2292

Segment 0.0268 0.0316 0.0299

Vowel 0.0171 0.0095 0.0095

Wdbc 0.0228 0.0351 0.0246

Wine 0.0111 0.0337 0.0111

700 0.0291 0.0391 0.0391

Mean 0.1260 0.1565 0.1255

Page 0.0355 / 0.0307

Splice 0.0328 / 0.0375

Dna 0.0447 / 0.0455

Letter 0.0270 / 0.0202

Satimage 0.0830 / 0.0870

Shuttle 0.0015 / 0.0008

Mean 0.0374 / 0.0369
should be less than the runtime reported in Table V if it was [-8,-7,—6,-5,...,5,6,7,8]. The number of
run on our computer, but one should note that its generalization trainings needed on each training—test pair is

performance is very poor.

C. Comparison With SVMs on More Benchmark Data Sets

In order to validate the generalization performance of
GS-SVMs, we compare to HM-SVMs, soft-margin SVMs
on 15 benchmark data sets from University of California at
Irvine (UCI) [37]. These data sets have been extensively used
in testing the performance of diversified kinds of learning
algorithms. This collection is a well-balanced mixture of the
learning tasks with different characteristics, which contains
problems with a few or with many training samples, with a few
or with many classes, with a few or with many features, and
with low or high noise. The characteristics of benchmark data
sets are given in Table VI. One-against-one method is used to
extend binary classifiers to multiclass classifiers.

For the data sets where the test samples may be available, the
error on the test samples is reported in Table VII. For the data
sets where the test samples may not be available, tenfold cross
validation is run and the average error of tenfold cross valida-
tion is reported in Table VII. For each training—test pair, tenfold
cross validation is performed on the training set for tuning-free
parameters. Before training, we scale all the training samples
into the interval [—11], and then adjust the test samples using
the same linear transformation. The detailed experimental setup
is the following.

1) For soft-margin SVMs, kernel parameter and reg-

ularization parameter are chosen from intervals
log,(6) = [-8,—-7,—6,—5,...,5,6,7,8] and
log,(C) = [-1,0,1,2,...7,8,9,10]. This range

is enough for our problems. The number of trainings
needed on each training—test pairis 10x 17x 12 = 2040.
2) For GS-SVMs and HM-SVMs, kernel pa-
rameter is chosen from interval log,(6) =

10 x 17 = 170. This range is enough for these data sets.
Pairwise two-tailed #-tests indicate that GS-SVMs are much
better than HM-SVMs on eight data sets, i.e., Australian,
German, Glass, Heart, Iris, Liver, Wine, and Diabetes. As for
the remaining data sets, GS-SVMs and HM-SVMs obtain the
similar performance. Pairwise two-tailed ¢-tests also indicate
that GS-SVMs are much better than SVMs on Glass, and worse
than SVMs on Liver. As for the remaining data sets, GS-SVMs
and SVMs obtain the similar performance.

VI. WHY DOES GREEDY STAGEWISE ALGORITHM
FOR SVMS WORK?

Empirical study has shown that GS-SVMs work well on var-
ious data sets. In this section, we will further explore the reason
for the success of GS-SVMs. According to statistical learning
theory, the generalization performance of learning algorithms
not only depends on the empirical risk but also the Vapnik—Cher-
vonenkis (VC) dimension of the hypothesis space. If the VC di-
mension of the hypothesis space is too large, the empirical risk
minimization is possibly not consistent, i.e., the learning algo-
rithms with a small empirical risk may bring a large actual risk.

Chang and Lin [38] have shown that if a kernel function is
strictly positive definite, HM-SVMs have unique solution. In
other words, HM-SVMs with positive—definite kernel can com-
pletely separate the training samples with the presence of noise
or not. This means that the hypothesis space is too large and
HM-SVMs can suffer from overfitting. In order to obtain good
generalization performance, it is necessary to find a right bal-
ance between the empirical risk and the VC dimension of the
hypothesis space. By introducing a regularization term, soft-
margin SVMs can balance the empirical risk and the VC dimen-
sion of the hypothesis space and thus obtain the good general-
ization performance.
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Fig. 3. Test errors of GS-SVMs, RSVMs, SVMs, and HM-SVMs on seven data sets.

GS-SVMs adjust the weights of the kernel functions one by
one. The weight of each kernel function centered on the training
samples is adjusted once at most, so GS-SVMs run / iterations
at most. In fact, the early stopping rule can act as an implicit reg-
ularization term, and thus, it controls the capacity of hypothesis
space. Note that GS-SVMs usually do not give a good approxi-
mation solution for HM-SVMs.

The set of hyperplanes

FPa={w-x-b=0: wiw<A?} (24
is called the set of A-margin separating hyperplanes if they clas-
sify vector x as follows:
1, w-x—b>1
y = _1

w-x—b< —1. (25)

Note that classifications of vectors x that fall into the margin
[—1, 1] are undefined. For the set of A-margin separating hy-
perplanes, the following theorem holds true.

Theorem 2 [39]: Let vectors x € X belong to a sphere of
radius R. Then, the set of A-margin separating hyperplanes has
the VC dimension H bounded by the inequality

R2
H < min <F,l) + 1. (26)
It is well known that the VC dimension of the set of hyper-
planes is equal to d+1, where d is dimensionality of input space.
However, Theorem 2 shows the following: 1) the VC dimen-

sion of the set of A-margin separating hyperplanes can be less
than d + 1; and 2) we can control the VC dimension of the set
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of A-margin separating hyperplanes by controlling A, i.e., the
length of the weight vector w.
The weight vector obtained by GS-SVMs is

l
wl =" ady® (xi) 27)
i=1

where o,i = 1,.../ is the solution of GS-SVMs. Conse-
quently, the length of the weight vector is

11
1 T
A_% = (WO) W0 = Z Za?a?yiyj[( (Xi,Xj). (28)
i=1 j=1
This  means  that the separating  hyperplane
constructed by GS-SVMs  belongs to the set
T, = {w-x-b=0: wTWSAEQ}. We can

look at wT'w < Ay ? as an implicit constraint for GS-SVMs.
If we put the constraint to a prior GS-SVM, the solution of
GS-SVMs does not change. The smaller Aj? is, the smaller
the capacity of I'a, becomes. If A 2 obtained by GS-SVMs
is suitable for the problems at hand, GS-SVMs can give
a good regularization parameter implicitly. However, one
should remember that the separating hyperplane constructed
by GS-SVMs usually is not the hyperplane that minimizes
the empirical risk. According to statistical learning theory,
the hyperplane minimizing the empirical risk is preferred for
the given capacity of hypothesis space. One can find such
hyperplane in I' o, by the following optimization problem:

!
miani
i=1
st oy (<w,®(x;)>) > 1-¢, i1=1,...,¢
& >0, i wliw < A%

?

(29)

Equation (29) also is called rigorous support vector machines
(RSVMs) by Bi and Vapnik [40]. The solutions of RSVMs and
SVMs coincide if the appropriate C' and Ay % are given. Thus,
if GS-SVMs can find a good approximate solution for RSVMs
with A = Ay, we can explain why GS-SVMs obtain good gen-
eralization performance. We will show this by the following ex-
periments.

In Figs. 2 and 3, we give the training errors and test errors
of GS-SVMs, RSVMs, SVMs, and HM-SVMs. The kernel
parameter of RSVMs is set to the same as for GS-SVMs, and
Ay % in RSVMs is computed by the weight vector obtained by
GS-SVMs. Detailed experimental setup of GS-SVMs, SVMs,
and HM-SVMs is the same as in Section V. Note that the
training errors and test errors are the average of a tenfold cross
validation.

From Figs. 2 and 3, we can see that the test error of
HM-SVMEs is significantly larger than its training error on each
data set; however, the test errors of GS-SVMs, RSVMs, and
soft-margin SVMs are close to their training errors on each
data set. This indicates that HM-SVMs suffer from overfitting;
however, GS-SVMs, RSVMs, and soft-margin SVMs avoid it.

From Figs. 2 and 3, we also can see that RSVMs with
A = Ay obtain good generalization performance. This indi-
cates that the early stopping rule in GS-SVM can choose an
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appropriate regularization parameter implicitly. On the other
hand, the training error of GS-SVMs is close to that of RSVMs
on seven data sets. This shows that GS-SVMs can find a good
approximate solution for RSVMs. Thus, we can explain the
reason for the success of GS-SVMs: 1) GS-SVMs can choose
an appropriate value of A and A by the early stopping rule;
and 2) GS-SVMs can find a good approximate solution for
RSVM with A = Ay.

VII. CONCLUSION AND DISCUSSION

HM-SVMs have a risk of getting overfitting in the presence
of noise. To deal with this problem, this paper presents a greedy
stagewise algorithm for SVMs, named GS-SVMs, to train
HM-SVMs, which attempts to approximately train HM-SVMs
while avoiding overfitting. Extensive empirical comparisons
show that GS-SVMs are superior to HM-SVMs and comparable
with soft-margin SVMs in generalization performance. On the
other hand, GS-SVMs also obtain an impressive speedup
relative to soft- and hard-margin SVMs; hence, they are very
suitable for large scale problems. To explore the reason for
the success of GS-SVMs, statistical learning theory is utilized
to analyze the empirical results. It seems that the success of
GS-SVMs lies in that the early stopping rule in GS-SVMs can
act as an implicit regularization term.

Note that although our algorithm is derived under the con-
dition that the kernel function is positive definite, GS-SVMs
can also be extended to the nonpositive—definite kernel function.
Hence, future work also includes exploring the performance of
GS-SVMs using the nonpositive—definite kernel functions.
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