tulip: A tool for locating performance problems along Internet paths

Ratul Mahajan
Neil Spring
David Wetherall
Tom Anderson

University of Washington
Where is the problem along this path?

The Internet is a black box

Problems such as
- packet loss, queuing (congestion) and significant reordering
Limitations of existing tools

- SNMP stats are limited in scope
 - can be used only inside your domain
 - granularity issues
- *ping and traceroute*-like tools don’t deal with path asymmetry

Diagram: Path asymmetry implicates the wrong link.
Overview of tulip

Measuring forward path to routers is the basic building block

- Localizes reordering, queuing and loss
 - works from a host to an arbitrary IP address
- Infers link properties by subtracting path properties
 - path to router must be a prefix of the path to dst.
- Uses ICMP timestamps and IP identifiers
Queuing on the forward path [cing]

- ICMP timestamps to access router’s clock
 - 1 ms resolution; supported by over 90% routers
- Queuing inferred from delay variation
 - engineering: clock calibration, response generation time
Loss on the forward path

- Loss measurements use the IP identifier field
 - 70% of routers implement IP-ID as a counter
- Unambiguous forward data packet loss when control responses get consecutive IP-IDs
- Robust to response rate-limiting at the routers
Implementation

- Implemented in ruby, on top of Scriptroute
 - runs on Linux, FreeBSD and OS X
- Runs in three phases
 1. discover routers along the path
 2. test which routers support fwd path diagnosis
 3. measure paths to routers
- Reports properties of one-way and round trip paths to intermediate routers
% tulip loss ratul.dhcp.nanog31.cnet.com
1 eureka-GE1-5.cac.washington.edu (128.208.4.100) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.966 (966/1000) ro=0.000 (0/1000)
2 uwbr1-GE0-1.cac.washington.edu (140.142.150.23) rt=0.000 (0/1000)
3 prs1-wes-ge-1-0-0-0.pnw-gigapop.net (198.107.151.30) rt=0.000 (0/1000)
4 att-pwave-1.peer.pnw-gigapop.net (198.32.170.29) rt=0.001 (1/1000)
5 tbr1-p012502.st6wa.ip.att.net (12.123.203.170) rt=0.000 (0/1000)
6 tbr2-cl1.sffca.ip.att.net (12.122.12.113) rt=0.000 (0/1000)
7 gar4-p390.sffca.ip.att.net (12.123.13.178) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.000 (0/1000) ro=0.000 (0/1000)
8 idf22-gsr12-1-pos-7-0.rwc1.attens.net (12.122.255.218) rt=0.000 (0/1000)
9 mdf3-bi4k-1-eth-1-1.rwc1.attens.net (216.148.209.62) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.953 (953/1000) ro=0.000 (0/1000)
10 mdf3-bi4k-2-ve-57.rwc1.attens.net (63.241.72.146) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.909 (905/996) ro=0.004 (4/1000)
11 ge4-7.cn-sfo1-6506-1.cnet.com (216.239.127.5) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.988 (987/999) ro=0.001 (1/1000)
12 ge1-1.365-sfo1-6506-1.cnet.com (216.239.127.2) rt=0.000 (0/1000)
 fw=0.000 (0/1000) co=0.965 (964/999) ro=0.001 (1/1000)
13 ge1-3-0.border.nanog31.cnet.com (216.239.118.2) rt=0.000 (0/1000)
14 gateway.nanog31.cnet.com (216.239.118.130) rt=0.001 (1/1676)
 fw=0.001 (1/1676) co=0.950 (640/674) ro=0.001 (1/1675)
15 ratul.dhcp.nanog31.merit.net (192.35.166.145) rt=0.015 (14/904)
 fw=0.000 (0/904) co=0.989 (877/887) ro=0.003 (3/890)
Tulip in action
Consistency along the path (queuing)

- One-way measurements are consistent
- Round trip measurements can be polluted

median queuing delay to intermediate routers in an example path
Evaluation

◆ Is it accurate?
 • end-to-end correctness
 • internal consistency
 (see the paper)

◆ What is the fault localization granularity?
Localization granularity

- Location of the fault is uncertain when
 - a router does not support a required feature
 - probes take a non-prefix path to a router
Localization granularity (2)

- Median is 2 hops for loss and 4 hops for queuing

- Round trip probing can further improve granularity
Improving effectiveness

◆ Turn on the features used by tulip
 • let yourself and other operators diagnose paths through your network

◆ Simple router changes can further improve the diagnostic ability of tulip
 • granularity of queuing localization
 • supporting multiple simultaneous loss rate measurements
Better timing information

Problem: ICMP timestamp requests address the router directly
 • reduces diagnosis granularity when the prefix path property does not hold

Fix: insert timestamps in TTL-expired messages
 • backwards compatible, incrementally deployable
 • 32 unused bits in the TTL-expired messages
Better counter support

Problem: IP-ID is a shared counter
 • what if all of you start using tulip?

Fix: maintain N (constant) counters
 • hash source address and IP-ID of the probe to select the counter
 • backwards compatible, incrementally deployable (today, N=1)
Summary

Tulip is a new performance diagnosis tool
- finds where packets are lost, reordered or queued to within 2-4 hops on average
- compatible with asymmetric routing

Download it at
http://www.cs.washington.edu/research/networking/tulip