
26

Chapter 2

REGIONS AND THE ZPL LANGUAGE

This chapter describes the ZPL language, concentrating on the role of regions in its

design. To make this discussion both readable and precise, some language concepts are

introduced informally at first and are then reconsidered with increased formality as the

chapter progresses. While this format would not be appropriate for a language reference

manual, it is designed to provide an appropriate mixture of clarity and precision for this

presentation.

Note that this chapter focuses on the sequential interpretation of ZPL, largely ignoring

the parallel implications of regions and the language itself. Since parallelism is inherent in

the definition and use of regions, this will leave some questions unanswered at the chapter’s

conclusion. These questions will be addressed in the following chapter, which describes the

parallel implications of regions.

This chapter’s description of ZPL is meant to provide a general overview of the lan-

guage. For a more complete description, refer to the ZPL Programmer’s Guide and the

ZPL web page [Sny99, ZPL01].

The structure of this chapter is as follows. Sections 2.1–2.14 describe the ZPL language,

including such fundamental concepts as regions, arrays, and array operators. Section 2.15

illustrates ZPL’s use in a number of small sample applications that will be used in subse-

quent chapters. Section 2.16 describes other sequential approaches for array programming

including vector indexing and slicing. Finally, Sections 2.17 and 2.18 provide an evaluation

of ZPL’s features in the sequential context, listing both benefits and liabilities of the region

as it currently exists. This chapter’s contents serve as an expanded discussion of work that

was published previously [CLLS99, CLS99].

27

2.1 ZPL’s Guiding Principles

Languages are for Communicating

One of the primary principles that has guided ZPL’s development is the notion that program-

ming languages are meant to be a means of communication between human and computer.

Programmers have algorithms in their minds that they would like to execute on a computer.

Computers have finite resources and an extremely limited capacity for understanding high-

level languages. Programming languages should form a bridge between these two points,

spanning the gap between programmer and computer using a direct, natural route that com-

plements the abilities of both. When this principle is violated, communication is broken

and a heroic effort is required by the user and/or compiler if the program is to have its

intended effect.

Such broken languages can result in macho compiling, in which tremendous effort is

put into helping a compiler recognize idioms that are not made apparent by the language

and to implement them efficiently. These efforts tend to result in brittle optimizations that

are easily broken if the programmer does not stick to the specific set of idioms that the com-

piler recognizes [Lew00]. When the optimization does not fire, programmers must expend

great effort to achieve their desired results. Frustration abounds for both programmers and

compiler implementors.

In contrast, creating a language that is natural to compile to a given architecture allows

implementors more time to work on general improvements and optimizations, rather than

worrying about particular syntactic patterns or corner cases. It should be noted that most

programming languages which have enjoyed widespread use have not relied on sophisti-

cated compiler optimizations to achieve acceptable baseline performance.

ZPL strives to implement this principle for parallel programming by providing a syntax

that directly reflects parallelism. This allows users to express the parallelism that is inherent

in their algorithms and to evaluate the parallel overheads of their programs. It also allows

ZPL’s implementors to detect parallelism trivially and create a straightforward baseline

28

implementation. By avoiding the recognition problem, implementors can concentrate their

efforts on optimizations that improve the baseline implementation.

The False Seduction of Legacy Code Reuse

Many parallel computing approaches have been designed in hopes of taking advantage of

existing sequential codes with minimal programmer effort. For example, a perfect par-

allelizing compiler would transform sequential programs into parallel code automatically.

Similarly, languages such as High Performance Fortran (HPF) [Hig94] and Co-Array For-

tran (CAF) [NR98] were designed with the idea of leveraging existing code as a primary

goal. Ideally, programmers can take their existing sequential programs, make minimal

modifications to them, and end up with a good parallel implementation.

While this is a laudable goal, the assumption that incremental changes can turn a good

sequential algorithm into a good parallel one is naive. The seductive pitch of these ap-

proaches is that the compiler will do all of the hard work for you once you add a line of

code here or there to help it out. The reality of the situation is that the work required to

transform sequential programs into an optimal parallelizable form is often nontrivial for

both the programmer and the compiler [FJY98]. This effect is demonstrated by the con-

ceptual leap between the sequential and SUMMA matrix multiplication implementations

of Chapter 1. Often, a parallel code bears little resemblance to its sequential counterpart.

In such cases, the effort required to convert a sequential program into an effective parallel

one can be greater than that which would have been required to write a new program from

scratch with parallelism in mind.

Starting from First Principles

ZPL approaches this problem from the opposite direction. Rather than starting with a se-

quential language and striving to detect the parallelism inherent in its (sequential) syntax,

ZPL’s design starts with nothing and incrementally adds concepts and operations that are

29

Listing 2.1: Simple Type, Constant, and Variable Declarations in ZPL
type

age = shortint;
coord = record

x: integer;
y: integer;

end;

constant
pi: double = 3.14159265;
tabsize: integer = 1000;
maxage: age = 128;

var done: boolean;
length: integer;
name: string;
origin: coord;
table: array [1..tabsize] of complex;

implicitly parallel. By starting from first principles in this way, ZPL was able to avoid

supporting language constructs that disable parallelism. As an example, ZPL does not per-

mit traditional scalar indexing of its parallel arrays, due to the fact that it is an inherently

sequential construct. This approach forces programmers to consider the opportunities for

parallelism in a program from its inception, rather than doing the minimal amount of work

to get the compiler to accept their sequential code, and then spending hours with feedback

tools trying to determine why it is not achieving good parallel performance.

ZPL’s syntax is based on Modula-2 [Wir83] rather than a more popular language like

C or Fortran. This decision reinforces the idea of “starting from scratch” by forcing C and

Fortran users to confront the notion that certain features of those languages are not present

in ZPL due to their interference with parallelism (e.g., pointers, scalar array indexing, and

common blocks). It also reinforces the idea that programmers should consider their se-

quential algorithms afresh when implementing them in parallel by making it difficult for

existing C and Fortran codes to be tweaked slightly and run through the compiler.

30

Listing 2.2: Sample Configuration Variable Declarations in ZPL
config var

n: integer = 100; -- a sample problem size
verbose: boolean = true; -- use to control output

logn: integer = lg2(n); -- log of the problem size
nsq: integer = nˆ2; -- the problem size squared
npi: double = pi*n; -- n times the constant pi

A second reason for choosing Modula-2 was to support a language whose syntax is

both readable and intuitive. While it would be possible to create C and Fortran dialects of

ZPL, no such effort has been made at this point. The primary challenge would be to ensure

that the features of C and Fortran which have been deliberately omitted from ZPL would

interact appropriately with its parallel concepts (or simply outlaw them altogether).

As Chapter 4 will discuss, ZPL is compiled by translating it to C. For this reason, C’s

influence is occasionally seen in the language’s syntax. For example, the names of ZPL’s

data types and its formatting of I/O both strongly reflect C.

2.2 Scalar ZPL Concepts

ZPL’s scalar concepts are largely un-original and uninteresting, but form an important foun-

dation for the rest of the language, so are described here quite briefly.

2.2.1 Data types, Constants, and Variables

To start with the basics, ZPL supports standard data types, type declarations, and declara-

tions for constants and variables, as in most languages. It supports integers of varying sizes

as well as floating point and complex values of varying precision. ZPL supports homoge-

neous array types (referred to as indexed arrays) and heterogeneous record types. For some

sample type, constant, and variable declarations, refer to Listing 2.1.

31

Table 2.1: A Summary of ZPL’s Scalar Operators

Arithmetic Operators
+ addition
- subtraction
* multiplication
/ division
% modulus
ˆ exponentiation

Logical Operators
& and
| or
! not

Relational Operators
= equality
!= inequality
< less than
> greater than
<= less than/equal
>= greater than/equal

Bitwise Operators
band and
bor or
bnot complement
bxor xor

Assignment Operators
:= standard
+= accumulative
-= subtractive
*= multiplicative
\= divisive
&= conjunctive
|= disjunctive

2.2.2 Configuration Variables

ZPL’s configuration variables are a somewhat more unique scalar concept. Each config-

uration variable represents a loadtime constant—a value that can be defined at the outset

of a program’s execution but which cannot be changed thereafter. This allows users to

define values that they may not want to constrain at compile time, such as problem sizes,

verbosity levels, or tolerance values. The advantage of making such values configuration

variables rather than traditional variables is that it allows the compiler to treat the variable

as a constant of unknown value during analysis and optimization.

Configuration variables are defined similarly to normal constants, except that their ini-

tializing values are merely defaults that can be overridden on the program’s command-line.

Configuration variable initializers may be defined using expressions composed of constants,

scalar procedures, and other configuration variables. Currently, ZPL only supports config-

uration variables of scalar types (including records and indexed arrays). Listing 2.2 shows

some sample configuration variable declarations.

32

Listing 2.3: Sample Uses of ZPL’s Control Structures
if (age > maxage) then
writeln("Age too large!");

end;

for i := 1 to tabsize do
table[i] := 0;

end;

repeat
length /= 2;
done := (length < 100);

until (done);

while (origin.x > origin.y) do
leftshift(origin);

end;

2.2.3 Scalar Operators

ZPL supports a standard set of scalar arithmetic, logical, relational, bitwise, and assignment

operators. See Table 2.1 for an overview.

2.2.4 Control Structures

ZPL supports standard control structures such as conditionals, for loops, while loops, and

repeat-until loops. See Listing 2.3 for some simple examples.

2.2.5 Blank Array References

To encourage array-based thinking, ZPL’s indexed arrays support a shorthand notation to

operate over their entire index range without a loop. This is done by omitting the indexing

expression for an array reference. For example, the assignment to table in Listing 2.3

could be written as follows using blank array references:

table[] := 0;

33

Listing 2.4: Sample ZPL Procedures
prototype mycomp(x: double; y: double): integer;

procedure leftshift(var pt: coord);
begin
pt.x -= 10;

end;

procedure mycomp(x: double; y: double): integer;
begin
if (x < y) then
return -1;

elsif (x = y) then
return 0;

else
return 1;

end;
end;

This syntactic shortcut is designed to aid with the common case of performing purely ele-

mentwise operations on indexed arrays. In many codes, blank array references can elimi-

nate a number of trivial and uninteresting loops over an array’s indices.

2.2.6 Procedures

ZPL’s primary functional unit is the procedure, which can accept value or reference pa-

rameters and return a single value of arbitrary type. Procedures strongly resemble their

Modula-2 counterparts and may be recursive. ZPL also supports prototypes that allow a

procedure’s signature to be declared for use before the procedure is defined. Listing 2.4

contains some sample prototype and procedure definitions.

2.2.7 Interfacing with External Code

Though ZPL’s choice of Modula-2 as a base syntax limits the amount of code re-use that

can take place within the parallel portion of a ZPL program, existing scalar code can be

34

Listing 2.5: An Example of Using extern in ZPL
extern constant M_PI: double;
extern var errno: integer;

extern type timezone = opaque;
timeval = record

tv_sec: longint;
tv_usec: longint;

end;

extern prototype gettimeofday(var tv: timeval; var tz: timezone);

integrated into a ZPL program if it can be called by and linked into a C program. This is

achieved using the extern keyword which can be applied to types, constants, variables,

and procedures. External types may be partially specified or omitted completely using the

opaque keyword, which allows the programmer to store variables of external types and

pass them around, but not to operate on them directly or modify them. See Listing 2.5 for

some sample external declarations.

2.3 Regions and Parallel Arrays

As mentioned in the introduction, ZPL’s fundamental concept is that of the region. A region

is simply an index set—a set of indices in a coordinate space of arbitrary dimensions. ZPL’s

regions are regular and rectilinear in nature. In this sense they are much like traditional

arrays with no associated data. This similarity is emphasized syntactically: simple regions

are defined using syntax that resembles a traditional array’s bounds. For example, the

following shows a simple two-dimensional region and the set of indices that it describes:

[1..m, 1..n]

Regions may contain singleton dimensions which describe only a single index value. These

are defined by replacing the degenerate range with a single index (e.g., [1, 1..n] rather

than [1..1, 1..n]).

35

(a) (b) (c)

BigR

TopRow

R

C
B

A

[R] A := B + C;

A CB

Figure 2.1: Using Regions and Arrays. (a) An illustration of the three regions declared in
Section 2.3: R, TopRow, and BigR. (b) Three parallel integer arrays of size BigR—A, B,
and C. (c) An example of how a statement’s enclosing region scope restricts the range of
its operators. Only indices within R (interior to the arrays) are referenced in this statement.

ZPL programmers can name regions. For example, the following declarations name the

simple regions above “R” and “TopRow.” They also create a third region, “BigR”, which

extends both dimensions of R by a single index in each direction.

region R = [1..m, 1..n];
TopRow = [1, 1..n];
BigR = [0..m+1, 0..n+1];

See Figure 2.1a for an illustration of these regions.

The dimension bounds of named regions must be expressions composed of constants

or configuration variables. The rank or dimensionality of a region refers to the number of

dimensions that it contains. For example, all of the regions above have rank 2.

Regions have two primary purposes. The first is to declare parallel arrays. This is

done by specifying a region and an element type as a variable’s type declaration. Such

declarations result in the allocation of an array with an element of the specified type for

each index described by the region. For example, the following declaration creates three

arrays of integers named A, B, and C (Figure 2.1b):

var A, B, C: [BigR] integer;

The rank of a parallel array is defined to be the rank of its region. For example, all of

36

the parallel arrays above have a rank of 2. Parallel arrays may not be nested. That is, the

element type of a parallel array may not contain a parallel array itself.

Parallel arrays are the primary data structure in ZPL, and will generally be referred to

as “arrays” within this dissertation. The traditional scalar arrays described in Section 2.2

will always be referred to as “indexed arrays” to avoid confusion. Note that this chapter

does not explain why parallel arrays are so named, but merely uses the term as a label. The

following chapter provides the justification for the name (though discerning readers will

possibly figure it out on their own).

The second purpose of regions is to provide indices for array references within a ZPL

statement. Unlike indexed arrays, ZPL’s parallel array elements cannot be referenced using

traditional indexing mechanisms. Instead, regions are required to specify the indices for an

array reference. As an example, consider the following statement:

[R] A := B + C;

This statement says to add arrays B and C elementwise, assigning their resulting sums to

the corresponding values in A. The statement is prefixed by the region scope “[R]” which

specifies that the addition and assignment operations should be performed for all indices

described by R—namely, the interior elements. Thus, this statement describes the

matrix addition computation from Chapter 1. Region scopes serve as a form of universal

quantification. For example, the statement above is equivalent to:

R

See Figure 2.1c for an illustration.

Using region scopes, any of ZPL’s standard scalar operators can be applied to arrays

in an elementwise manner. The chief constraint is that arrays cannot be read or written at

indices that were not in their defining region (since no data is allocated for those indices).

Region definitions may also be specified explicitly within a region scope. These are

called dynamic regions, since their bounds are typically based on expressions whose values

37

are not known until runtime. For example, the following code fragment adds row i of

arrays B and C, where i may be computed during the program’s execution.

[i, 1..n] A := B + C;

Note that technically, this region scope should contain another set of square brackets to be

consistent with the region specification syntax described previously. However, ZPL allows

programmers to drop the redundant square brackets for readability.

Subsequent sections will describe regions in more depth, but for now this example-

based overview of the ZPL language continues.

2.4 Array Operators

If ZPL could only express elementwise computations on its arrays, it would not be a very

useful language. More general computations are supported by using array operators to

modify a region scope’s indices for a given array variable or expression. This section

provides a brief introduction to the most important array operators: the @ operator, floods,

reductions, and remaps.

2.4.1 The @ Operator

The @ operator (@) is ZPL’s simplest array operator, providing a means for translating array

references using constant offset vectors known as directions. Directions are specified and

named in ZPL as follows:

direction north = [-1, 0];
south = [1, 0];
east = [0, 1];
west = [0,-1];

These declarations create four vectors, one for each of the cardinal directions (Figure 2.2a).

The @ operator is applied to an array reference in a postfix manner, taking a direction

as its second operand. Applying the @ operator to an array causes the indices of the en-

closing region scope to be translated by the direction vector as they are applied to the array

38

(b)(a) (c)

A BA B C

[R] A := B@west + C@east;

east west

southnorth

[BigR] A := B@^east;

Figure 2.2: The @ Operator. (a) An illustration of the directions declared in Section 2.4.1.
(b) A use of the @ operator to add shifted references of B and C, storing the result in
region R of A. (c) A diagram illustrating the application of the wrap-@ operator to assign a
cyclically-shifted version of B to A.

reference. For example, the expression A@south would increment all indices in the region

by 1 in the first dimension. As a slightly more interesting example, consider the following

statement:

[R] A := B@west + C@east;

This replaces each interior element of A with the element just to its left in B and just to its

right in C. More formally:

R

Refer to Figure 2.2b for an illustration.

Note that the legality of this code hinges on the fact that B and C are declared using

region BigR, causing the @-references to access declared values. Had they been declared

using region R, the @-references would refer to values outside of their declared boundaries,

which would be illegal.

Expressions using the @ operator may be used on either side of an assignment, but may

not be passed by reference to a procedure. This dissertation will primarily concentrate on

reading @-references and not writing them.

39

(b)(a)

A

(c)
[TopRow] A := +<<[R] B;[R] A := >>[TopRow] B;

A B B B

[R] biggest := max<< B

biggest

Figure 2.3: The Flood and Reduction Operators. (a) An illustration of the flood operator,
causing the top row of B within R to be replicated across all rows of A within R. (b) An ap-
plication of the sum reduction operator, which totals the values of B within each column of
R and assigns the sum to the corresponding value of A within TopRow. (c) A full reduction
which finds the biggest value of B within R and assigns the result to the scalar biggest.

The Wrap-@ Operator

One variation on the @ operator is the wrap-@ operator (@ˆ), which causes accesses to

the array that fall outside of its declared boundaries to wrap around and access the opposite

side. Thus a statement like:

[BigR] A := B@ˆeast;

would cyclically shift B one position to the left, assigning it to A.

2.4.2 The Flood Operator

The flood operator (>>) provides a means for replicating a slice of an array’s values, either

explicitly or implicitly. Symbolically, it can be viewed as taking a small piece of the array

expression to its right and expanding it to make it bigger when used to the left. The flood

operator is a prefix operator which is followed by a region to indicate the slice of the array

to be replicated. This region is referred to as the source region, while the enclosing region

of matching rank is called the destination region. As an example, consider the following

assignment:

[R] A := >>[TopRow] B;

40

This statement assigns the first row of B (restricted to columns 1 through n) to rows

1 through m of A. See Figure 2.3a for an illustration.

In this statement, the flood operator’s role is to replicate the values of B described by the

source region (TopRow or [1, 1..n]) such that they conform to the destination region

(R). This action can be interpreted in either an active or a passive way. Actively, the flood

operator is taking the row of values described by TopRow and using it to create an array

of size R for assignment to A. Passively, the operator can be thought of as causing the first

dimension of indices in R to be ignored when accessing B, replacing them by the index 1.

Formally, this statement can be interpreted as follows:

R

The main legality issues for the flood operator concern the conformability of the source

and destination regions. First, they must be the same rank. In addition, each dimension

of the source region must either be a singleton (as in this example’s first dimension), or it

must be identical to the destination region (as in the second dimension). The former case

results in replication of the values described by the singleton index. The second results in a

traditional array reference.

2.4.3 The Reduction Operator

The reduction operator (<<) is the dual of the flood operator. It compresses an array’s

values down to form a smaller array. As with the flood operator, it uses prefix notation and

expects a source region to describe the values that should be reduced. The resulting size of

the expression is described by the enclosing region scope of matching rank.

Because multiple values are being collapsed into a single item, some sort of reduction

operation must also be specified to indicate how this collapsing should take place. These

operations are typically commutative and associative, and they precede the reduction oper-

ator syntactically. Built-in reduction operations include addition, multiplication, min, and

41

max, as well as logical and bitwise operators. Users may also create custom reduction

operations using scalar ZPL procedures.

As a simple example, consider the following statement which uses a plus reduction:

[TopRow] A := +<<[R] B;

This statement computes the sum of each column of B (for the rows and columns specified

by R), storing each result in the first row of the corresponding column of A. See Figure 2.3b

for an illustration. Again, this operator has both an active and a passive interpretation.

Actively, it compresses B from rows 1 through m down to a single row (the first). Passively,

it expands the reference to row 1 of B so that it refers to rows 1 through m, as combined

using addition. Formally:

TopRow R such that

The legality rules for reductions are similar to those for the flood operator. The source

and destination regions must have the same rank. In addition, each dimension of the source

and destination regions must either be the same (causing the dimension to be read nor-

mally), or the destination dimension must contain a singleton (causing the values in that

dimension to be reduced).

Full Reductions

One special case for reductions collapses an entire array to a single scalar value. This is

known as a full or complete reduction, in contrast with the partial reductions described

previously. Full reductions require only a single covering region since the scalar reference

requires no indices. A simple example is shown here:

var biggest:integer;

[R] biggest := max<< B;

This statement finds the maximum value of B within the indices described by R and assigns

it to the scalar value biggest. See Figure 2.3c for an illustration. Note that full reductions

42

A A B C

[R] A := A#[B,C];

Figure 2.4: The Remap Operator. The B and C arrays serve as the map arrays for the remap
of A in this assignment, thus they must contain values from 0 to 5 within region R (displayed
here using varying levels of grey). As a specific example, consider the assignment to row
2, column 3, outlined with a dotted line. The corresponding values in B and C are both 0,
indicating that element [0,0] of A should be assigned to this location.

compute the same value as a partial reduction over all dimensions, but they store the result

in a scalar rather than an array element. For example, the full reduction above is similar to

the following partial reduction:

[k1, k2] A := max<<[R] B;

2.4.4 The Remap Operator

The remap operator (#) serves as a catch-all operator, supporting parallel random array

accesses. Unlike traditional array indexing, the remap operator requires an entire array of

indices per dimension rather than a single index. The following is a simple example:

[R] A := A#[B,C];

This use of the remap operator randomly accesses the source array A as specified by

the map arrays B and C. In this statement, the result is assigned back into A. The B array

provides the indices in the first dimension for each access to A, while C provides the indices

for the second dimension. This is actually easiest to see in the formal version:

R

This statement is illustrated in Figure 2.4.

43

The main legality constraint for the remap operator is that the number of map arrays

must be equal to the rank of the source array so that each of its dimensions has an index. In

addition, the map arrays must not refer to indices that are outside of the source array’s defin-

ing region, since that would refer to values with no allocated storage. As Section 2.15.2 will

demonstrate, remap operators can be used to operate on arrays of different ranks (and are in

fact ZPL’s only mechanism for doing so). Remap operators may be applied to expressions

on either side of an assignment, though this dissertation focuses on uses on the right-hand

side.

2.4.5 Other Array Operators

ZPL has a few other array operators that will not be described in this thesis, most notably

the scan operator for performing parallel prefix operations, and the wrap and reflect oper-

ators for supporting boundary conditions. These are omitted in this discussion for brevity

and because they do not pose significant challenges or intrigues in ZPL’s design and im-

plementation beyond the array operators described here. For more information on these

operators, please refer to the literature [Sny99].

2.5 Formal Region Definition

Given the intuitive definitions of array operators, we now reconsider regions more for-

mally. Each dimension of a region can be represented by a 4-tuple sequence descriptor,

. The variables and represent the low and high bounds of the sequence.

The value represents the sequence’s stride, and encodes its alignment. A sequence

descriptor, , is interpreted as defining a set of integers, , as follows:

and (2.1)

For example, the descriptor describes the set of even integers between one and

six, inclusive: .

44

A -dimensional region, , is defined as a list of sequence descriptors, , where

represents the indices of the region’s th dimension:

The index set, , defined by a region is simply the cross-product of the sets specified

by each of its sequence descriptors:

For example, the index set of the 2-dimensional region would be

defined as follows:

Recall the simple region declarations described in Section 2.3 which take the following

general form:

R = [.. , .. , , ..]

Such declarations correspond to the following formal region definition:

These sequence descriptors specify that each dimension contains all indices from to ,

due to the trivial values used for the stride and alignment. Note that while ZPL could

allow programmers to express regions in a sequence descriptor format, the syntax used

here allows the common case to be described in a clearer, more intuitive manner.

45

2.6 Region Operators

In addition to the simple region declarations of Section 2.3, ZPL provides a set of region

operators that allow new regions to be created relative to existing ones. These are provided

to give the user a more descriptive way of creating regions than specifying them by hand.

They also provide the only means of changing a region’s stride or alignment.

Region operators are defined using a set of prepositional operators—of, in, at, and

by—that are defined for sequence descriptors. Each of these operators modifies a sequence

descriptor using an integer value, . The operators are defined as follows:

of
if

if

if

in
if

if

if

at

by
if

if

if

To summarize, the of and in operators modify the sequence bounds relative to the ex-

isting bounds, leaving the stride and alignment unchanged. The of operator describes a

range adjacent to the original range, whereas in describes a range interior to the previous

range. The at operator translates the sequence bounds and alignment of a sequence. The

by operator is used to scale the stride of the sequence and possibly shift the alignment,

leaving the bounds unchanged.

46

Listing 2.6: Applications of Region Operators
direction north = [-1, 0];

east2 = [0, 2];
n2e3 = [-2, 3];
step2 = [2, 2];

region R = [1..m, 1..n];
NorthernBoundary = north of R;
EasternInterior = east2 in R;
ShiftedN2E3 = R at n2e3;
OddCols = R by east2;

ZPL defines a region operator for each prepositional operator. Each region operator

takes a base region and an offset vector in the form of a direction. The operator is evaluated

by distributing each component of the direction to the region’s corresponding sequence

descriptor and applying the prepositional operator. For example, the at operator would be

distributed as follows:

at at

at at

As a more concrete example, the code in Listing 2.6 shows some direction declarations

followed by region declarations that use the region operators. These regions, as well as sev-

eral others, are illustrated relative to the base region R in Figure 2.5. In each case, the role

of the direction in defining the new region is indicated. Though the formulas defining the

prepositional operators seem fairly complex at first glance, they define regions which intu-

itively match the English definition of the preposition, making the mathematical definitions

simply a formality. Intuitively, the of operator defines regions that are adjacent to the base

region while in defines regions that are just within the base region. The at operator shifts

the base region, while by strides the base region. In each case, the offset vector provides

the notion of the direction and magnitude of the operation.

47

R by step2
n2e3

east2
R by step2

R
north

R
east2

R
n2e3

base region/
direction of in at by

NorthernBoundary

EasternInterior

ShiftedN2E3

OddCols

Region Operator

Figure 2.5: The Region Operators. This diagram illustrates the region operators applied
using the declarations of Listing 2.6. Each column of pictures represents a single region
operator (of, in, at, and by), while each row illustrates a different base region/direc-
tion pair. The indices of the regions created by applying the region operator to the base
region and direction are shown in grey. Arrows gives a sense of the directions’ roles in the
definition. Those regions that were given names in Listing 2.6 are labeled.

48

(c)
[R] A := F; [R] F := >>[1, 0..n+1] B;

(d)(b)

A F

(a)

FloodRow F

F B

Figure 2.6: Flood Dimensions and Flood Arrays. (a) An illustration of a region whose first
dimension is flooded. It represents a single row of values that are conformable to any row.
(b) An array F declared using region FloodRow. (c) An assignment from F to A within
region R. (d) An assignment from a row of B to F using the flood operator.

Although there are certainly other region operators that could be useful to a program-

mer, those listed here were selected as a basis set since they support common array refer-

ences and are closed over our region notation. This chapter’s discussion section considers

this topic further.

2.7 Flood Dimensions

2.7.1 Introduction to Flood Dimensions

In addition to traditional dimensions (e.g., l..h) and singleton dimensions (e.g., i), re-

gions can have a third type of dimension, the flood dimension. Flood dimensions are syn-

tactically represented using an asterisk (*), and they represent a single index that conforms

to any other index in the dimension. As an example, consider the following code fragment:

region FloodRow = [*, 0..n+1];

var F:[FloodRow] integer;

[R] A := F;

This code begins by declaring a region which is floodable in the first dimension and

contains columns 1 through n in the second (Figure 2.6a). It then uses the region to declare

49

a row of integers named F (Figure 2.6b). The assignment to A reads from the appropriate

column of F for all rows in R. That is, the single row of values from F is explicitly replicated

in rows 1 through m of A. See Figure 2.6c for an illustration.

Note that FloodRow differs from a row declared using a singleton dimension like

TopRow. In particular, if F was declared using TopRow in the example above, the as-

signment would attempt to read from F in rows other than the first. This constitutes an

error since F did not allocate storage for those rows. The use of the flood dimension

in FloodRow allows it to conform to all indices, making the assignment legal.

2.7.2 Relationship with the Flood Operator

The code above illustrates a similarity between flood dimensions and the flood operator—

both are used to represent replicated values. In fact, the flood operator can be used to assign

to the values of a flood array. Consider the following example:

[FloodRow] F := >>[1, 0..n+1] B;

In this code fragment, row 1 of B is replicated by the flood operator to conform to the flood

dimension of FloodRow (Figure 2.6d). Similar assignments without the flood operator

would be illegal:

[FloodRow] F := B;
[1, 0..n+1] F := B;

The first assignment is illegal because B is defined for rows 1 through m, making it am-

biguous which row of B should be stored in F. Even if B was declared to be a single row

(e.g., [1, 0..n+1]), this assignment would remain illegal since the right-hand side of

the assignment needs to conform to “all” row indices, not simply a particular one. For a

standard array like B, this can only be achieved using the flood operator. The second as-

signment is illegal because it attempts to assign to a single row of F rather than assigning

all of its rows using a flood dimension.

50

2.7.3 Formal Definition

As described above, an array with a flood dimension can intuitively be thought of as having

a single set of values in that dimension which conform to all indices. Equivalently, the flood

dimension can be thought of as representing an infinite number of indices, all of which are

constrained to contain the same values.

Flood dimensions are represented using a special sequence descriptor: (, , 0, 0).

This states that the dimension covers all indices (). The stride and alignment

of 0 reflects the fact that there is a single implementing set of values and therefore no way

to step from one index to the next. The flood sequence descriptor cannot be interpreted

like those of traditional dimensions due to the nonsensical nature of working in a modulo-0

system. Rather, it serves as a placeholder that readily distinguishes flood dimensions from

traditional ones. By convention, is defined to be . The index

defining the single set of values, will be referred to as . For example, the element in the

fourth column of F would be referred to as .

Only the identity forms () of the prepositional operators for sequence descriptors

are defined for flood dimension sequence descriptors. This matches the intuitive sense that

a dimension which represents an infinite number of indices cannot have adjacent or interior

indices, cannot be shifted, and cannot be strided. Thus, only direction components of 0

may be applied to a flood dimension using ZPL’s region operators.

The legality of interactions between flood dimensions, traditional dimensions, and array

operators will be summarized in Section 2.12, which contains a more formal treatment of

these subjects.

2.8 Index Constants

ZPL provides a set of built-in array constants referred to collectively as the index con-

stants. These are a group of built-in virtual parallel arrays named Index1, Index2,

Index3, etc. When read, each element of Indexi evaluates to its index in the th dimen-

51

1 n

Index2Index1Index1 Index2 A

(b)
[R] A := (Index1 − 1)*n + Index2;

(a)

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

1 2 3 4
5 6 7 8
9 101112
13141516

Figure 2.7: The Index Constants. (a) Pictures depicting Index1 and Index2. BigR and
R are indicated by the outlines. (b) A diagram showing the unique numbering of elements
in R using Index1 and Index2.

sion. Thus, Index1’s elements evaluate to their row indices, Index2’s elements to their

column indices, etc. More formally:

i

Figure 2.7a gives a pictorial depiction of Index1 and Index2within regions R and BigR.

As a sample use, the following code fragment numbers the values of A within R from

1 to m n in row-major order:

[R] A := (Index1 - 1)*n + Index2;

Using the formal definition of index constants, this assignment is interpreted as follows:

See Figure 2.7b for an illustration.

As a second example, the following code uses the remap operator to assign the transpose

of B to A within region R, assuming that m = n (if it did not, the map arrays might refer to

values outside of B’s declared size).

[R] A := B#[Index2, Index1];

52

A B Index2 Index1

[R] A := B#[Index2,Index1];

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0

5
4
3
2
1

0

5
4
3
2
1

Figure 2.8: An Array Transpose. This diagram illustrates how the Index constants can be
used to transpose arrays when used as the map arrays in a remap operation. By using col-
umn indices as the map array for B’s rows and row indices for its columns, the elements of
B are transposed during their assignment to A. The dotted lines indicate how element
of A is assigned element of B.

Using the formal definition of index constants, this assignment is interpreted as follows:

See Figure 2.8 for an illustration of this assignment.

Each index constant can be thought of as being floodable in every dimension other than

the th, since its size is arbitrarily large and its values only differ in dimension . However,

note that Indexi conforms to arrays of rank , , , etc., making it more flexible

than a similar user-defined flood array.

2.9 Masks

As defined in Section 2.3, regions must be rectilinear. This results in index sets that are

very rectangular and regular, though possibly strided. In many applications, programmers

may want to refer to a more arbitrary set of indices than those permitted by regions. For

this reason, regions may be modified by boolean masks to select a subset of indices from

the region. The mask must have the same rank as the region that it is modifying and must

be allocated for all indices described by the region.

53

Mask

2 0

(a)

A

(b)
[R with Mask] A := B;

BIndex1 Index2

TFT F
F T F T

TFT F
F T F T

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0

5
4
3
2
1

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0

5
4
3
2
1

Figure 2.9: An Example of Using Masks. (a) The mask is assigned true for all locations
in R where the sum of the row and column indices is even. (b) The mask is used to restrict
the indices of R when assigning from B to A.

Here is a simple example that uses masks:

var Mask: [R] boolean;

[R] Mask := ((Index1 + Index2)%2 = 0);
[R with Mask] A := B;

The first assignment initializes the values of Mask to be true wherever the sum of the row

and column indices is even (Figure 2.9a). The second assignment is prefixed by a region

scope in which R is modified by Mask. This causes the assignment of B to A to take place

only at those indices where the sum of the row and column indices is even. More formally:

R such that true

See Figure 2.9b for an illustration. Masks can also be applied using the without keyword,

which reverses the sense of the mask, computing only at indices where the mask’s value is

false.

Masks will not be covered with any more depth or formality in this chapter, as they are

fairly intuitive and not a central concept in this dissertation. In general, any region scope

can be masked, and the mask has the effect of filtering the region’s indices as they are

applied to array expressions within the region’s scope.

54

Listing 2.7: A Demonstration of Region Scoping
1 [R] begin
2 A := B@west + C@east;
3 [BigR] A := B@ˆeast;
4 A := >>[TopRow] B;
5 [TopRow] A := +<<[R] B;
6 biggest := max<< B;
7 [k1, k2] A := max<<[R] B;
8 A := A#[B, C];
9 end;

2.10 Region Scoping

2.10.1 Region Scoping Overview

Up to this point, each statement that has referred to a parallel array has been prefixed by

a region scope to provide the statement’s base indices. In general, region scopes can be

applied to an entire block of statements using compound statements like control flow or

a simple begin end block. Moreover, new region scopes can be applied to individual

statements within the compound statement, eclipsing the enclosing scope for that statement

but no others.

As an example, all of the array statements in Section 2.4 could be written in a single

block of statements (though an admittedly nonsensical one) as shown in Listing 2.7. The

outermost region scope, [R], serves as the enclosing region for lines 2, 4, 6, and 8. Lines 3,

5, and 7 are enclosed by an overriding region scope. Floods and partial reductions (as in

lines 4, 5, and 7) open additional region scopes that enclose their array arguments (B, for

each statement in this example).

Region scopes should be thought of as being passive rather than active objects. They

do not cause things to occur, but merely supply indices, if needed, for the array references

that they enclose. To this end, statements may be enclosed by multiple region scopes of

different ranks, each of which can provide indices for array references of matching rank.

55

Listing 2.8: An Example of Multiple Enclosing Region Scopes
region R1D = [1..m];

R2D = [1..n, 1..p];

var x: integer;
Y: [R1D] integer;
Z: [R2D] integer;

[R1D] [R2D] begin
x := 1;
Y := 2;
Z := 3;

end;

As an example, consider Listing 2.8. In this fragment, the assignment to x is a scalar

and therefore does not require the enclosing region scopes at all. The assignment to Y

refers to a 1-dimensional array and therefore makes use of the enclosing 1-dimensional

region scope [R1D]. Likewise, the assignment to Z is 2-dimensional and uses [R2D] as

its enclosing region scope. The enclosing region scope that controls an expression’s array

references is referred to as its covering region.

2.10.2 Dynamic Region Scoping

Region scoping occurs not only within static blocks of code, but also across procedure

calls. As an example, consider Listing 2.9. The addmat() procedure takes three array

variables as arguments, adding two of them and assigning to the third. Note that since no

region scope is specified within the procedure, each procedure call’s enclosing 2D region

scope will be used during execution. Thus, the first call performs the computation for all

indices within R, the second performs it for the top row of R, and the third performs it for

the th column of R.

56

Listing 2.9: A Demonstration of Dynamic Region Scoping
procedure addmat(var X, Y, Z: [BigR] integer);
begin
X := Y + Z;

end;

[R] addmat(A,B,C);
[TopRow] addmat(A,B,C);
[1..m,k] addmat(A,B,C);

2.10.3 Region Inheritance

Due to the scoped nature of regions, it is often useful to inherit aspects of the enclosing

region scope when opening a new region scope. ZPL provides two mechanisms for inheri-

tance, the blank dimension and the double-quote reference ("). Each is described here.

Blank Dimensions

When opening a dynamic region, one or more dimensions may be inherited from the en-

closing region scope by omitting their definitions. As an example, consider that line 4 of

Listing 2.7 can be re-written using a dynamic region as follows:

A := >>[1, 1..n] B;

However, since this statement is enclosed by region R, which also spans columns 1 n, the

second dimension can be inherited using a blank dimension as follows:

A := >>[1,] B;

Since floods require that all non-replicated dimensions match, this syntax can save some re-

dundant specification. It is especially useful when the source region’s indices are computed

dynamically. The same technique can be used to rewrite the partial reduction of line 5 in

Listing 2.7 as follows:

[1,] A := +<< [1..m,] B;

57

Listing 2.10: Region Inheritance Using Double-Quote References
[R] begin

[north of "] A := 0; -- " refers to R
[south of "] A := 0; -- " refers to R
[east of "] A := 0; -- " refers to R
[west of "] A := 0; -- " refers to R

end;

Listing 2.11: Mask Inheritance Using a Double-Quote Reference
[R with Mask] begin

A := 0;
[[k,] without "] A := 1; -- " refers to Mask

end;

Blank dimensions can inherit from a procedure’s dynamically enclosing scope. In addi-

tion, they can be used to leave the size of formal array parameters unspecified. For example,

the addmat() procedure of Listing 2.9 could be written in a more general manner using

blank dimensions as follows:

procedure addmat(var X, Y, Z: [,] integer);

This specifies that addmat() takes three 2-dimensional parallel arrays as its parameters,

but does not specify their size or indices.

Double-Quote References

Double-quote references are used within region scopes to refer to the enclosing region as a

whole. This is especially useful with region operators. For example, the code fragment in

Listing 2.10 zeroes out the four boundaries of variable A (Figure 2.10a). The rank of the

inherited region is inferred from the direction supplied to the region operator. For example,

in this listing, since north is 2-dimensional, the enclosing 2-dimensional region, R, is

inherited. As with blank dimensions, the double-quote can be used to refer to a procedure’s

dynamically enclosing region scope.

58

k

A A

(a) (b)

Figure 2.10: Region Inheritance Examples. In both diagrams, white is used to represent 0,
black to represent 1, and grey to indicate values that are untouched. (a) The result of the
assignments using double-quote references in Listing 2.10. (b) The result of the statements
in Listing 2.11 using the same checkerboard mask as Figure 2.9.

The double-quote can also be used to inherit a mask from the enclosing region scope.

For example, in Listing 2.11, the inner region scope restricts the enclosing scope R down

to its th row. It then inherits the mask from the enclosing scope, determining its rank using

that of the dynamic region. Thus, this code first zeroes out A for all indices in R for which

Mask is true. It then assigns the value 1 to all elements for which it is false in the th row

of R. See Figure 2.10b for an illustration.

2.11 Scalar Promotion

Scalar promotion is the idea of permitting a concept that is scalar in nature to interact

naturally with a parallel array concept. Scalar promotion is an intrinsic concept in ZPL.

For example, most of the sample codes in this chapter have made use of scalar promotion

by using the scalar assignment operator, :=, to assign one array expression to another.

Similarly, the codes have applied scalar addition, subtraction, multiplication, and modulus

operators to array expressions with the understanding that the operator would be applied

to corresponding elements of the arrays. In these instances, scalar promotion causes the

operator to be applied to the array expressions one scalar at a time for all indices in the

enclosing region. The use is so intuitive that it is virtually transparent.

59

Listing 2.12: An Example of Scalar Procedure Promotion
var W, V: [R] double;

Res: [R] integer;

[R] Res := mycomp(W, V);
[R] Res := mycomp(W, 0);

The rest of this section explores the concept of promotion and its uses in ZPL, beginning

with a discussion of scalar conformability.

2.11.1 Conformability of Scalar Promotion

When a scalar operator is promoted and applied to two array arguments, ZPL requires that

the expressions be of the same rank. This means, for example, that scalar addition cannot

be used to add a one-dimensional array to a two-dimensional array (although a similar

effect can be achieved by storing the one-dimensional values in a two-dimensional array

with a flooded dimension). Furthermore, the result of any promoted scalar operator is an

array expression with the same rank as its operands. These are the requirements for array

conformability in ZPL.

Just as scalar operators can be promoted, so can scalar values. As an example, in

Listing 2.8, the scalar constants 2 and 3 were assigned to parallel arrays Y and Z. In

these assignments, the scalar is promoted much like a scalar operator. The scalar value is

treated as an array of appropriate rank that stores the scalar value in every location. Scalar

variables are much like arrays that are flooded in every dimension: they are conformable

with arbitrary indices in any dimension, and they hold the same value at all locations.

However, scalars are strictly more powerful than flood arrays in that they are conformable

with arrays of arbitrary rank. That is, scalar values may interact with arrays of rank 1,

2, etc., whereas any user-defined flood array will have a fixed rank.

60

Listing 2.13: Using Shattered Control Flow to Compute an Array’s Absolute Value
[R] if (A < 0) then

B := -A;
else
B := A;

end;

2.11.2 Procedure Promotion

Just as scalar operators can be promoted using array operands, so can scalar procedures be

promoted using array actual parameters. As an example, the scalar procedure mycomp()

in Listing 2.4 can be applied to array arguments as shown in Listing 2.12. In the first call,

arrays W and V are passed to mycomp() an element at a time for all indices in R, with the

return value being assigned to the corresponding value of Res. In the second call, only the

first argument is promoted, forcing the second argument, a scalar, to be promoted to act as

a 2D array, making the parameters conformable.

A promoted scalar procedure’s actual parameters must have the same rank. For ex-

ample, it would be illegal to call mycomp() with array arguments that were 2D and 3D,

respectively. As expected, the return value of a promoted scalar procedure will be promoted

to the rank of its array parameters.

Note that procedure promotion only applies to scalar procedures. That is, procedures

which refer to regions, parallel arrays, or ZPL’s array operators may not be promoted. In

addition, regions that use I/O, modify global variables, or call other parallel procedures are

considered to be parallel to ensure deterministic execution.

2.11.3 Shattered Control Flow

Just as scalar operators and functions can be promoted, so can control structures (condi-

tionals, loops) that are traditionally scalar in nature. For example, consider the conditional

in Listing 2.13 which branches based on an array expression rather than a scalar value.

61

Listing 2.14: Using Promoted Procedures Instead of Shards
procedure abs(x: integer): integer;
begin
if (x < 0) then
return -x;

else
return x;

end;
end;

[R] B := abs(A);

This conditional is evaluated for each element of A described by region R. Array references

within the body of the conditional refer to elements with the same indices at which the

conditional was evaluated. Thus, the conditional in this example will assign each element

of B the absolute value of its corresponding element in A for all indices in R.

This promotion of control structures is referred to as shattered control flow because

the single thread of control which is implicit in traditional ZPL statements may now take

different actions on an element-by-element basis. In effect, it is “shattered,” giving each

index its own logical thread of control. At the end of the shattered control flow statement (or

shard for short), the conceptual threads are joined and a single thread of execution resumes.

It should be noted that shards are similar to inlining a promoted scalar function. For

example, the code in Listing 2.13 could be rewritten as shown in Listing 2.14. For this

reason, the bodies of shattered control flow statements have many restrictions similar to

those for promoted scalar procedures. In particular, they may not contain regions or parallel

array references whose rank differs from that of the controlling expression. Most array

operators are also disallowed in shattered control flow expressions, though limited uses

of the @ operator are allowed (corresponding to passing @-references to a procedure by

value).

62

Table 2.2: Formal Definition of Writing an Array Within a Region Scope

[] := (where is defined over)

is normal or singleton is flooded

is normal or singleton
Legal if .

Writes .

Illegal since and

’s values must be identical.

is flooded Illegal, since . Legal. Writes .

2.12 Array Operators, More Formally

Now that regions have been formally defined, and their uses have been described more

completely, the array operators can be defined more formally. This section gives a more

precise definition of the array operators, and also for the legality of reading and writing

arrays within an enclosing region. For simplicity, these definitions are given for the single-

dimensional case. Multidimensional cases simply extend these rules by applying them to

each dimension independently in the natural manner. We begin by defining simple array

writes and reads.

2.12.1 Array Writes

Arrays can be modified by being on the left-hand side of an assignment operator or by

being passed by reference to a promoted scalar procedure. To test the legality of a write to

an array, each dimension of its defining region, , must be compared to that of the enclosing

region scope of matching rank, . Table 2.2 summarizes the different cases that are possible,

classifying them based on whether the dimensions of the enclosing region and the array’s

defining region are singleton, flooded, or a normal range of indices.

In the case that neither dimension is flooded, the write is legal so long as the array is

declared over the indices referenced by the region. When both dimensions are flooded, the

63

Table 2.3: Formal Definition of Reading an Array Within a Region Scope

[] := (where is defined over)

is normal or singleton is flooded

is normal or singleton
Legal if .

Reads .

Legal.

Reads .

is flooded Illegal, since . Legal. Reads .

write is legal, and the single replicated value will be modified. As described in Section 2.7,

the cases in which one dimension is flooded but the other is not are illegal due to the fact

that one index set represents an infinite index range while the other is finite.

2.12.2 Array Reads

The legality of an array read is defined in Table 2.3. In most cases, array reads are identical

in legality to array writes. The one exception is that it is legal to read an array’s flood di-

mension within a non-flooded region dimension. In this case, the programmer is specifying

that a finite subset of the infinite index space be read, which makes sense. All of the other

cases match their array write counterparts.

2.12.3 The @ Operator

To be legal, the array and direction supplied to an @ operator must match in dimensionality.

This rank is also used to determine the enclosing region . As with array reads and writes,

the dimensions of , and the array’s defining region, , must be considered. Table 2.4

defines the legality of each case. For each legal reference, the transformation from the

array’s data space to the region’s index space is also given, indicating which array values

are read for each index in the enclosing region.

64

Table 2.4: Formal definition of the @ Operator

[] @[] (where is defined over)

is normal or singleton is flooded

is normal or singleton
Legal if at .

Returns at .

Legal.

Returns at , .

is flooded Illegal, since . Legal. Returns at .

The cases in which one or both of the regions have a flood dimension are identical to a

traditional array read. This implies that applying the @ operator to a flood dimension has

no effect, as one would expect. When neither dimension is flooded, the legality condition

is similar to that of an array read: if the array is declared for the region’s indices shifted by

the offset, the reference is legal. The array reference evaluates to the values located at those

shifted indices.

2.12.4 The Flood Operator

Evaluating a flood operator differs from previous sections in that two regions are involved—

the source () and destination () regions of the flood. The first legality constraint is that

the array expression being flooded must match the source region in dimensionality. This

rank is also used to determine the enclosing region, so these will match as well. In addition,

it must be legal to read the array expression using the source region as its covering region.

If these conditions are met, corresponding dimensions of the source and destination

region are compared, with the possible outcomes summarized in Table 2.5. Floods are

typically used to replicate a single value across a range of indices, making the cases where

is a singleton and is normal or flooded the interesting ones. These uses of the flood

operator cause the value at the index indicated by the source region to be referenced for

65

Table 2.5: Formal Definition of the Flood Operator

[] >>[]

is normal is singleton is flooded

is normal

Legal if .

Returns at ,

.

Legal. Returns at ,

where ,

.

Legal.

Returns at ,

.

is singleton
Illegal, since

.

Legal. Returns at ,

where ,

.

Legal.

Returns at ,

where

is flooded
Illegal, since

.

Legal. Returns at ,

where .

Legal.

Returns at .

all indices in the destination region. The case where is also a singleton is considered

a degenerate case—the value is replicated over that single index. When is flooded or

and are both normal and equal, the reference is treated as a traditional array read. When

is normal but is not, replication is nonsensical, so these cases are illegal.

2.12.5 The Reduce Operator

The reduce operator also utilizes a source and destination region. Once again, the argument

expression and the source region must match in rank, and it must be legal to read the

argument in the context of the source region.

Table 2.6 summarizes the different cases for reduction operators. The cases are essen-

tially the dual of the flood operator, as one would expect. For simplicity, the table describes

a sum reduction, though other operators may be substituted by replacing the summations in

the definitions. The interesting cases reduce a range of values to a single value, and these

occur when is normal and is either a singleton or flood dimension. The degenerate case

66

Table 2.6: Formal Definition of the (plus) Reduce Operator

[] +<<[]

is normal is singleton is flooded

is normal

Legal if = .

Returns at ,

.

Illegal, since

and .

Legal.

Returns at ,

.

is singleton

Legal. Returns

at ,

where .

Legal. Returns at ,

where and

.

Legal.

Returns at ,

where .

is flooded
Legal. Returns

at .

Legal. Returns at ,

where .

Legal.

Returns at .

occurs when is a singleton, causing the reduction to be trivial. If is flooded or and

are normal and equal, the dimension is treated as a traditional array read. The only case that

is illegal is trying to reduce a single value down to a range of values, which is nonsensical.

Full reductions are less complicated than partial reductions. Legality is determined by

whether the array can be legally read within the covering region of matching rank. If it can,

all values described by that region are combined by the given operation and returned as a

scalar.

2.12.6 The Remap Operator

The covering region for a remap expression is determined not by the rank of the source

array, but by that of the map arrays being applied to it (all of which must have the same

rank). The number of map arrays must equal the rank of the source array, so that they

provide an index for each of its dimensions. In addition, it must be legal to read each map

array within the context of the covering region.

67

Table 2.7: Formal Definition of the Remap Operator

[] #[] (where is defined over)

is normal or singleton is flooded

is normal or

singleton

Legal if , .

Returns at , .

Legal.

Returns at , .

is flooded
Legal if .

Returns at .

Legal.

Returns at .

The single-dimensional case is defined by Table 2.7. If neither the covering region, ,

nor the source array’s defining region, , are flooded, the reference is legal as long as the

array is declared for the indices described by the map array. The values corresponding to

the map indices will be returned by the reference.

If is flooded, the map array must be flooded as well in order to be read. The reference

will therefore be legal if the source array is defined for the index stored in the map array’s

unique location, and the value corresponding to that index will be returned. If is flooded,

the value of the map array is inconsequential. Regardless of its value, the single defining

value of the source array will be returned. This case corresponds to a traditional array read.

The multidimensional case is handled using the obvious extension: the legality of each

dimension is tested independently, and the indices for each dimension are determined by

reading each map array in turn. For each index in the covering region, the single value in

the source array defined by the map arrays’ indices is referenced.

2.13 Files and Input/Output

Console and file I/O have not been a primary focus of research in ZPL, nor will they serve a

large role in this dissertation, but they deserve the very briefest mention. ZPL supports the

68

ability to open files for reading and writing, and also supports the standard console input,

output, and error streams (zin, zout, and zerr, respectively). ZPL supports read(),

write(), and writeln() statements that can be used to read or write expressions to

one of these streams or to a file. Expressions can be formatted using control strings like

those accepted by C’s printf() and scanf() routines. Binary I/O is supported using

the bread() and bwrite() statements. Array expressions are read or written for all

indices in the enclosing region scope of the same rank, in row-major order (with some

minimal formatting in the case of text output).

2.14 ZPL Summary

This chapter’s description of ZPL concludes with a brief recap of its contents. To summa-

rize, ZPL contains traditional scalar language constructs using a Modula-based syntax. In

addition, ZPL supports configuration variables that serve as runtime constants and can be

set on the resulting executable’s command line.

ZPL supports array-based programming using the concept of the region to represent

a regular, rectilinear set of indices. Regions may be named or specified in-line. A re-

gion’s dimensions can represent a range of indices (potentially strided), a single index, or

a replicated index using a flood dimension. Region operators may also be used to create

new regions from existing ones. Regions are used to declare parallel arrays, which are the

primary unit of computation in ZPL. The language also supplies built-in Indexi array

constants which evaluate to their own indices in a particular dimension.

Regions are also used to define region scopes, which passively provide indices for paral-

lel array references and expressions of matching rank. Array operators are used to transform

a region’s indices as applied to a particular array expression. Array operators support trans-

lation, replication, reduction, or general remapping of an array’s values. Region scopes are

dynamically scoped and may inherit from their enclosing scopes of matching rank. Masks

can be applied to region scopes to filter out a subset of their indices.

69

ZPL allows the promotion of scalar operators, values, functions, and control flow to

interact with arrays in a natural manner. It also contains support for binary and text I/O of

scalar and array expressions to files or the console.

Nagging Questions

At this point, it is likely that there are several aspects of ZPL which seem arbitrary or

strange. For example: Why does ZPL prevent interactions between regions and arrays of

different rank if they are the same shape? Since the remap operator can be used to express

translations, floods, and reductions, why does ZPL bother supporting other array operators?

Why can ZPL regions only be applied to statements and certain array operators rather than

arbitrary expressions? Why are flood dimensions non-conformable with singleton dimen-

sions, given that they each represent a single set of defining values? Why are @-references

not allowed to be passed by reference to parallel procedures?

The answers to these questions are based on the parallel interpretation of regions and

arrays, and therefore will have to wait until the following chapter. For now, let us turn our

attention to some sample applications written in ZPL.

2.15 Sample Codes

This section contains several sample applications written in ZPL. The problems consid-

ered are the Jacobi iteration, matrix-vector multiplication, matrix multiplication, and tridi-

agonal matrix multiplication. These applications were chosen because they are simple,

well-known, and useful for demonstrating the language features described in this chap-

ter. Most of the problems have a few different implementations to illustrate different ap-

proaches in ZPL. For a larger variety of application domains in ZPL, please consult the

literature [WGS00, DLMW95, RBS96, LLST95, Sny99].

70

4

Figure 2.11: The Jacobi Iteration

2.15.1 Jacobi Iteration

The Jacobi iteration is a simple relaxation method for solving Laplace’s equation on a

regular grid [BBC 94]. Given an initial approximate solution, it refines the values using

a five-point stencil until the solution converges within some tolerance . The five-point

stencil simply replaces each value by the average of its neighbors in the four cardinal di-

rections. See Figure 2.11 for an illustration. The Jacobi iteration can be used, for example,

to approximate the electric potential in a flat metal sheet whose edges have a fixed electric

potential.

Listing 2.15 shows an implementation of the Jacobi iteration in ZPL. This code makes

use of many of the concepts that this chapter introduced: configuration variables, regions,

directions, and parallel arrays; region inheritance using blank dimensions and double-quote

references; the @ operator and full reductions; promotion of scalars, operators, and proce-

dures; and I/O.

The code begins with the program statement, which names the program and identifies

the code’s entry procedure. Lines 3–5 declare three configuration variables: n, which serves

as the size of the grid; epsilon which specifies the termination condition; and verbose

which indicates whether or not to print verbose output during the program’s run.

Lines 7–8 declare two regions for the program. The first, R, is the region which specifies

the size of the regular grid. The second region, BigR, is used to declare the main data array,

which requires an extra row and column in each direction to store boundary values.

71

Listing 2.15: The Jacobi Iteration
1 program jacobi;
2

3 config var n: integer = 100; -- the problem size
4 epsilon: double = 0.00001; -- the convergence condition
5 verbose: boolean = false; -- verbose output?
6

7 region R = [1..n, 1..n]; -- the computation indices
8 BigR = [0..n+1, 0..n+1]; -- the declaration indices
9

10 var A: [BigR] double; -- the main data values
11 New: [R] double; -- the new iteration’s values
12 delta: double; -- change between iterations
13

14 direction north = [-1, 0]; -- the four cardinal directions
15 south = [1, 0];
16 east = [0, 1];
17 west = [0,-1];
18

19 procedure init(var X: [,] double); -- array initialization routine
20 begin
21 X := 0;
22 [north of "] X := 0.0;
23 [south of "] X := 1.0;
24 [east of "] X := 0.0;
25 [west of "] X := 0.0;
26 end;
27

28 procedure jacobi(); -- the main entry point
29 [R] begin
30 init(A);
31

32 repeat
33 New := (A@north + A@south + -- five-point stencil on A
34 A@east + A@west)/4.0;
35

36 delta := max<< fabs(A - New); -- find maximum change
37

38 A := New; -- copy back
39 until (delta < epsilon); -- continue while change is big
40

41 if (verbose) then
42 writeln("A:\n", A); -- write data if desired
43 end;
44

45 writeln("delta: %le": delta); -- always write delta
46 end;

72

Lines 10–12 declare the variables for the problem. Array A serves as the primary data

array, which is declared over region BigR to store the boundary values. Array New stores

the new values computed during each iteration and requires no boundary values, so it is

declared using region R. The variable delta is a scalar value that is used to store the

maximum change that an array value undergoes in a single iteration.

Lines 14–17 declare the four cardinal directions, used to express the five-point stencil.

Lines 19–26 declare a procedure init() that is used to initialize the data array A.

Note that this procedure is written in a generic manner for two-dimensional arrays, taking a

2D array of any size as its input parameter and containing statements that rely on dynamic

region inheritance. The procedure zeroes out the array for all indices specified by the

dynamically enclosing region scope, as well as its north, east, and west boundaries. The

southern boundary is initialized to 1.0.

The main procedure spans lines 28–46. It opens a region scope using R that supplies

indices to all parallel expressions within the procedure. It also serves as the enclosing

region for the call to init() on line 30.

The main computation takes place in lines 32–39. Lines 33-34 compute the 5-point

stencil on A using the @ operator and the four cardinal directions. The result is stored in

the array New. Next, in line 36, the scalar fabs() routine is promoted across the array

expression A - New. The fabs() routine is part of the standard C library and is included

in ZPL’s standard context. This computes the absolute value of the difference between

corresponding elements of A and New. The resulting array of values is then collapsed to

a scalar using the max reduction operator, and assigned to delta. The new values are

assigned back into A in preparation for the next iteration in line 38. This loop is repeated

until delta falls below the convergence value, epsilon.

Lines 41–45 output the results. If the verbose flag is true, line 42 prints the values

of A described by R to the console in row-major order. The final value of delta is printed

using exponential notation in line 45 and the program exits.

73

2.15.2 Matrix-Vector Multiplication

Matrix-vector multiplication is a fundamental operation that is used in a wide variety of

numerical computations. This section considers two possible implementations using 2D

and 1D vector representations.

2D Vector Implementation

Listing 2.16 shows an implementation of matrix-vector multiplication in ZPL. Though a

fairly simple program, it demonstrates the use of flood dimensions, file I/O, partial reduc-

tions, and the remap operator.

Typically, matrices are thought of as being 2-dimensional while vectors are considered

1-dimensional. However, since ZPL makes interactions between 1D and 2D arrays non-

trivial, this program represents all vectors using 2D arrays with either a flood or singleton

dimension. In particular, it uses a flooded row array to store the vector argument so that its

values will conform to all rows of the matrix.

Lines 3–5 declare the configuration variables. The values m and n are used to repre-

sent the number of rows and columns of the matrix, respectively. The third configuration

variable is of the string type and stores the filename for reading the matrix and vector.

Lines 7–10 declare the regions for this program. Region R is the base region which

describes the matrix indices. Lines 8–9 declare two row regions: TopRow, a singleton row,

and RowVect, a flooded row. Line 10 declares a singleton column region, ColVect, that

describes the result of the multiplication. Arrays are declared for each region in lines 12–15.

The matvectmult() procedure itself spans lines 17–34. Lines 20–23 open the file

specified by the filename configuration variable and read values for matrix M and input

vector I from it. Line 25 uses the flood operator to assign a replicated copy of the input

vector to V, the flooded vector. Note that the source region for the flood is a dynamic region

that inherits its second dimension from RowVect. Equivalently, the region TopRow could

have served as the source region. The dynamic region is used here for illustrative purposes.

74

Listing 2.16: Matrix-Vector Multiplication Using 2D Vectors
1 program matvectmult;
2

3 config var m: integer = 100; -- number of matrix rows
4 n: integer = 100; -- number of matrix columns
5 filename: string = "MV.dat"; -- input filename
6

7 region R = [1..m, 1..n]; -- matrix index set
8 TopRow = [1, 1..n]; -- top row of the matrix
9 RowVect = [*, 1..n]; -- row vector index set

10 ColVect = [1..m, n]; -- col vector index set
11

12 var M: [R] double; -- the matrix
13 I: [TopRow] double; -- the input vector
14 V: [RowVect] double; -- the vector flooded
15 S: [ColVect] double; -- the solution vector
16

17 procedure matvectmult();
18 var infile: file;
19 begin
20 infile := open(filename, file_read); -- open file
21 [R] read(infile, M); -- read matrix values
22 [TopRow] read(infile, I); -- read vector values
23 close(infile); -- close file
24

25 [RowVect] V := >>[1,] I; -- flood the input vector
26

27 [ColVect] begin
28 S := +<<[R] (M * V); -- matrix-vector mult.
29

30 writeln(S);
31 end;
32

33 -- [RowVect] V := S#[Index2, n]; -- transpose solution?
34 end;

75

The actual matrix-vector multiplication takes place on line 28. Since V is flooded in

its dimension, all of the vector values are aligned with the appropriate matrix values in M.

Thus, they can simply be multiplied elementwise using scalar multiplication over region R.

Since the solution vector is formed by summing the products in each row, a partial sum

reduction is used to reduce the data from R down to the singleton column, ColVect. This

represents the solution, which is written to the console in line 30.

In many matrix-vector multiplications, the matrix is square, and the solution vector

must be used in subsequent multiplications. With this in mind, line 33 indicates how the

solution vector could be re-assigned to a row vector using the remap operator. In particular,

the column index (Index2) of the row is used to access the first dimension of S while the

configuration variable n is promoted to access the second dimension.

It should be noted that region RowVect and array V could be completely omitted from

this program by inlining the flood expression into the matrix-vector multiplication state-

ment as follows:

S := +<<[R] (M * (>>[1,] I));

For this discussion, this version was not used due to the fact that it is somewhat less clear,

and does not demonstrate the use of flood dimensions.

Alternatively, region TopRow and array I could be removed from the program by read-

ing directly into array V. While this would make the program even clearer, it was not used

for this discussion in order to demonstrate the flood operator.

1D Vector Implementation

What if users really want to store their vectors as 1-dimensional arrays—is it possible

in ZPL? Certainly, although the next chapter demonstrates that there may be compelling

reasons to avoid such an implementation. This section illustrates matrix-vector multipli-

cation using a 1D vector representation. For this program and all that follow, I/O will be

omitted for brevity.

76

Listing 2.17: Matrix-Vector Multiplication Using 1D Vectors
1 program matvectmult;
2

3 config var m: integer = 100; -- number of matrix rows
4 n: integer = 100; -- number of matrix columns
5

6 region R = [1..m, 1..n]; -- matrix index set
7 InVect = [1..n]; -- 1D input vector indices
8 OutVect = [1..m]; -- 1D output vector indices
9

10 var M: [R] double; -- the matrix
11 V: [InVect] double; -- the input vector
12 P: [R] double; -- an array of products
13 S: [OutVect] double; -- the solution vector
14

15 procedure matvectmult();
16 [R] begin
17 P := M * V#[Index2]; -- compute the mults
18 -- then sum the rows:
19 [OutVect] [, n] S := (+<<[R] P)#[Index1, n];
20 end;

Listing 2.17 shows one way of writing such a code. To make a rather complex operation

somewhat more readable, it has been broken into two lines (17 and 19). Line 17 computes

the products, storing them in array P. These products are computed using the remap

operator to read the 1D input vector V as though it was a 2D array. Recall that the number

of map arrays in a remap must match the rank of the source array (1 in this case), and that

the rank of the result is inferred by the rank of the map arrays. This program uses Index2

as its map array which has ambiguous rank since it is conformable to arrays of rank 2 or

greater. However, in this case it must be 2D to allow the remap expression to conform to

the multiplication with 2D array M.

Line 19 adds up the rows of P, assigning the result to S. This is done using a partial

reduction as in the previous version using source region R and destination region [, n],

which inherits rows 1..m from R. Since storing the result in a 2D column vector seems

contrary to the spirit of this approach, it is immediately remapped for assignment to S using

Index1 and n as its map arrays. As in the previous statement, Index1 and the scalar n

77

Listing 2.18: The SUMMA Algorithm in ZPL
1 program summa;
2

3 config var m: integer = 100; -- first dimension
4 n: integer = 100; -- inner dimension
5 o: integer = 100; -- last dimension
6

7 region RA = [1..m, 1..n]; -- indices for A
8 RB = [1..n, 1..o]; -- indices for B
9 RC = [1..m, 1..o]; -- indices for C

10

11 var A: [RA] double; -- matrix A
12 B: [RB] double; -- matrix B
13 C: [RC] double; -- result matrix C
14

15 procedure summa();
16 var i: integer;
17 [RC] begin
18 C := 0; -- zero C
19

20 for i := 1 to n do -- loop over inner dim
21 C += (>>[, i] A) * (>>[i,] B); -- cross ith col of A
22 end; -- ...with ith row of B
23 end;

have ambiguous rank, but they can be inferred to be 1D by context due to the assignment

to S. The assignment itself is controlled by the enclosing 1D region scope OutVect.

That was fairly painful. The next chapter will show that this is not without good reason.

2.15.3 Matrix Multiplication

Matrix multiplication is yet another fundamental operation, and one that was used as mo-

tivation throughout Chapter 1. This section presents three different algorithms for matrix

multiplication.

The SUMMA Algorithm

As described in the introduction, the SUMMA algorithm for matrix multiplication is con-

sidered one of the most scalable parallel approaches [vdGW95]. It has a fairly straight-

78

forward implementation in ZPL due to the support for replication provided by the flood

operator. See Listing 2.18 for an implementation.

The program is fairly simple. The size of the matrices is specified by three configuration

variables m, n, and o. A region is declared for each of the matrix sizes, and an array declared

for each matrix. The execution is controlled by region RC, since all computations are done

with respect to the result matrix, C. First C is zeroed out in line 18. Then, a loop is opened

which specifies the iterations of the algorithm. On iteration , column of A and row

of B are flooded across RC and multiplied elementwise, accumulating into C. At the end of

the loop, C holds the result.

Cannon’s Algorithm

Cannon’s algorithm takes a systolic approach to matrix multiplication, illustrated in Fig-

ure 2.12. The algorithm begins by skewing the rows of and the columns of . In

particular, each row of A is cyclically shifted columns to the left. Similarly, column

of B is shifted rows upward. This has the effect of shifting A’s main diagonal into its

first column and B’s main diagonal into its first row. Matrix C is initialized to contain all

zeroes.

The main algorithm consists of iterations. On each iteration, the initial elements

of each matrix are multiplied elementwise and accumulated into C. The A matrix is then

cyclically shifted one row to the left and B is cyclically shifted one column upward. When

all iterations have completed, C contains the resulting matrix.

Listing 2.19 shows an implementation of Cannon’s algorithm written in ZPL. The dec-

larations are identical to those of the SUMMA algorithm, except that additional copies of

A and B are declared to hold the skewed versions of the arrays. This was done in order to

leave the original arrays unperturbed. Note that these copies could be eliminated by skew-

ing the original matrices and then un-skewing them at the end of the computation. Here,

the extra copies are used for simplicity. In addition to the extra arrays, two directions are

declared for use in the shifting.

79

nrepeat times

multiply
elementwise

skewed B matrix Bskewed Amatrix A

accumulate

matrix C

rotate
A’s rows

rows
skew skew

columns

rotate B’s
columns

Figure 2.12: Cannon’s Algorithm For Matrix Multiplication

80

Listing 2.19: Cannon’s Algorithm in ZPL
1 program cannon;
2

3 config var m: integer = 100; -- first dimension
4 n: integer = 100; -- inner dimension
5 o: integer = 100; -- last dimension
6

7 region RA = [1..m, 1..n]; -- indices for A
8 RB = [1..n, 1..o]; -- indices for B
9 RC = [1..m, 1..o]; -- indices for C

10

11 var A: [RA] double; -- matrix A
12 ASkew: [RA] double; -- skewed matrix A
13 B: [RB] double; -- matrix B
14 BSkew: [RB] double; -- skewed matrix B
15 C: [RC] double; -- result matrix C
16

17 direction nextcol = [0, 1]; -- directions for shifting
18 nextrow = [1, 0];
19

20 procedure cannon();
21 var i: integer;
22 [RC] begin
23 /* Skew A’s rows and B’s columns */
24 [RA] ASkew := A#[Index1, ((Index2 + Index1 - 2)%n) + 1];
25 [RB] BSkew := B#[((Index1 + Index2 - 2)%n) + 1, Index2];
26

27 C := 0; -- zero C
28

29 for i := 1 to n do
30 C += ASkew * BSkew; -- accumulate into C
31

32 [RA] ASkew := ASkew@ˆnextcol; -- shift ASkew
33 [RB] BSkew := BSkew@ˆnextrow; -- shift BSkew
34 end;
35 end;

81

+
+

+

+
+

demote to 2D

1

(a) (b)

n

m

p

to 3D
promote

to 3D
promote

multiply elementwise
and sum in third
dimension

matrix A

matrix B

matrix C

Figure 2.13: The PSP Algorithm For Matrix Multiplication

The initial skewing of the arrays is implemented in lines 24–25 using the remap operator

and map expressions involving the Index1 and Index2 constant arrays. Matrix C is

zeroed out in preparation for the main computation.

Within the main loop, line 30 performs a single elementwise multiplication of the

skewed matrices, accumulating the products into C. Lines 32–33 use the wrap-@ oper-

ator to shift ASkew and BSkew for the next iteration. At the end of the program, C will

contain the result matrix as expected.

PSP Algorithm

A third algorithm to consider is an instance of problem space promotion (PSP) [CLS99].

Problem space promotion is the idea of turning instances of iterations in an algorithm into

explicit data dimensions. In particular, the PSP matrix multiplication algorithm converts

the loop from 1 to in the SUMMA and Cannon algorithms into a third data dimension.

By doing so, the multiplications required for the matrix product are represented

by a 3D index space (Figure 2.13a). Conceptually, matrix represents one face of the

box while matrix represents a second perpendicular face. The algorithm proceeds by

82

Listing 2.20: PSP Matrix Multiplication in ZPL
1 program matmultpsp;
2

3 config var m: integer = 100; -- first dimension
4 n: integer = 100; -- inner dimension
5 o: integer = 100; -- last dimension
6

7 region RA = [1..m, 1..n]; -- 2D indices for A
8 RB = [1..n, 1..o]; -- 2D indices for B
9 RC = [1..m, 1..o]; -- 2D indices for C

10 R3D = [1..m, 1..n, 1..o]; -- 3D index space
11 RA3D = [1..m, 1..n, *]; -- 3D indices for A
12 RB3D = [* , 1..n, 1..o]; -- 3D indices for B
13 RC3D = [1..m, 1 , 1..o]; -- 3D indices for C
14

15 var A: [RA] double; -- matrix A
16 B: [RB] double; -- matrix B
17 C: [RC] double; -- result matrix C
18 A3D: [RA3D] double; -- matrix A in 3D
19 B3D: [RB3D] double; -- matrix B in 3D
20 C3D: [RC3D] double; -- matrix C in 3D
21

22 procedure matmultpsp();
23 begin
24 [RA3D] A3D := A#[Index1, Index2]; -- promote A to 3D
25 [RB3D] B3D := B#[Index2, Index3]; -- promote B to 3D
26

27 [RC3D] C3D := +<<[R3D] (A3D * B3D); -- compute C in 3D
28

29 [RC] C := C3D#[Index1, 1, Index2]; -- demote C to 2D
30 end;

replicating these faces throughout the box, computing their elementwise products, and then

summing along the third dimension to form . This idea is illustrated in Figure 2.13.

In ZPL, the elementwise products need not be represented explicitly, but can

be expressed using flood dimensions and a partial reduction. See Listing 2.20 for an imple-

mentation. The code declares the same 2D configuration variables, regions, and arrays as

in the previous codes. However, it also declares a 3D region to represent the 3-dimensional

computation space and three faces within that space—two flood regions for the argument

arrays and a third singleton region for the result.

83

The algorithm begins by using the remap operator to align the 2-dimensional A and

B matrices in the 3D space (lines 24–25). The computation itself is expressed in line 27,

which multiplies values of A and B within R3D and then reduces the products to the third

plane of the space. Finally in line 29, the result array is mapped from 3D back to 2D.

2.15.4 Tridiagonal Matrix Multiplication

As a final application area, consider the multiplication of two tridiagonal matrices. Though

any of the algorithms from the previous section can be used for this problem, the presence

of so many zeroes allows more specialized techniques to be used. In particular, the result-

ing product will be a pentadiagonal matrix whose values are formed from the products of

neighboring values in the tridiagonal argument matrices. See Figure 2.14 for an illustration.

Since this code only needs to reference nearby neighbors, our implementations will use the

@ operator rather than the floods and reductions of the previous matrix multiplication al-

gorithms.

Mask-based Solution

One approach for implementing tridiagonal matrix multiplication in ZPL is to use a mask

to restrict computation to one of the five resulting diagonals at a time. An implementation

of this approach is given in Listing 2.21.

The implementation begins by declaring the problem size in line 3 and a region to

describe the matrix indices in line 5. A larger region, BigR is also declared to store the

argument matrices such that @-references can spill outside of the main problem area. The

mask, arrays, and directions are declared in lines 8–16.

The implementation begins by zeroing out C so that all values not lying on the pentadi-

agonal will be correct. This could be done using a mask over all non-pentadiagonal indices,

but the approach shown is asymptotically equivalent and used for simplicity. Next, each di-

agonal is computed one at a time by setting the mask using an expression that compares the

84

(a)

(b)

A@east*B@north
A*B@north + A@east*B

A@east*B@north + A*B + A@west*B@south
A@west*B + A*B@south

(nothing)
A@west*B@south

matrix C matrix A matrix B

diagonal −2
diagonal −1

main diagonal

diagonal 1
diagonal 2

matrix C matrix A matrix B

Figure 2.14: Tridiagonal Matrix Multiplication

85

Listing 2.21: Tridiagonal Matrix Multiplication in ZPL Using Masks
1 program trimask;
2

3 config var n: integer = 100; -- assume n x n arguments
4

5 region R = [1..n, 1..n]; -- the base matrix size
6 BigR = [0..n+1, 0..n+1]; -- matrix with boundaries
7

8 var A: [BigR] double; -- matrix A
9 B: [BigR] double; -- matrix B

10 C: [R] double; -- the product matrix, C
11 Mask: [R] boolean; -- mask for selecting diagonals
12

13 direction north = [-1, 0]; -- the four cardinal directions
14 south = [1, 0];
15 east = [0, 1];
16 west = [0,-1];
17

18 procedure trimask();
19 [R] begin
20 /* Assume we’ve zeroed A and B’s boundaries */
21

22 C := 0; -- zero out C
23

24 /* Mask lowest diagonal (-2) and compute */
25 Mask := (Index1 = Index2 + 2);
26 [" with Mask] C := A@east * B@north;
27

28 /* compute diagonal -1 */
29 Mask := (Index1 = Index2 + 1);
30 [" with Mask] C := (A * B@north) + (A@east * B);
31

32 /* compute main diagonal */
33 Mask := (Index1 = Index2);
34 [" with Mask] C := (A@west * B@north) + (A * B) +
35 (A@east * B@south);
36

37 /* compute diagonal 1 */
38 Mask := (Index1 = Index2 - 1);
39 [" with Mask] C := (A@west * B) + (A * B@south);
40

41 /* compute diagonal 2 */
42 Mask := (Index1 = Index2 - 2);
43 [" with Mask] C := A@west * B@south;
44 end;

86

Index1 and Index2 arrays. The computation of each diagonal’s values is expressed in

a straightforward manner, using the mask to restrict it to the appropriate values. At the end

of the program, C contains the matrix product.

Shattered Control Flow Solution

A second implementation is very similar to the first, but uses shattered control flow rather

than a mask. The obvious advantage is that no time or space are required to compute and

store the mask.

The declarations are identical to the mask-based version. The main computation con-

sists of a shattered conditional that branches based on the relative values of Index1 and

Index2. Since the comparison of these arrays implies that they can be of any rank greater

than 1, the body of the conditional is examined to determine that this is a 2-dimensional

conditional, due to its references to A, B, and C. Each branch of the conditional simply

assigns C using that diagonal’s definition. The else clause at the end causes all non-

pentadiagonal values to be zeroed out.

Compact Solution

The final implementation uses a more compact representation for the banded matrices. In

particular, it uses an region, Tri, to represent the tridiagonal matrices and an re-

gion, Pent, to represent the resulting pentadiagonal. The regions’ second dimensions refer

to the diagonal numbers rather than matrix columns, and are therefore numbered between

, as appropriate. Note that directions north and south have been transformed

to ne and sw to reflect this index space transformation. The tridiagonal region is also ex-

tended by an additional row in each direction to handle @-references that spill outside of

the array’s bounds.

The computation proceeds by opening a single dynamic region per diagonal which in-

herits its row dimension from the enclosing region, Pent. The expression to compute each

87

Listing 2.22: Tridiagonal Matrix Multiplication in ZPL Using Shattered Control Flow
1 program trishard;
2

3 config var n: integer = 100; -- assume n x n arguments
4

5 region R = [1..n, 1..n]; -- the base matrix size
6 BigR = [0..n+1, 0..n+1]; -- matrix with boundaries
7

8 var A: [BigR] double; -- matrix A
9 B: [BigR] double; -- matrix B

10 C: [R] double; -- the product matrix, C
11

12 direction north = [-1, 0]; -- the four cardinal directions
13 south = [1, 0];
14 east = [0, 1];
15 west = [0,-1];
16

17 procedure trishard();
18 [R] begin
19 /* Assume A and B’s boundaries are zeroed out */
20

21 /* shatter control flow based on the row and column indices */
22 if (Index1 = Index2 + 2) then -- compute diagonal -2
23 C := A@east * B@north;
24 elsif (Index1 = Index2 + 1) then -- compute diagonal -1
25 C := (A * B@north) + (A@east * B);
26 elsif (Index1 = Index2) then -- compute main diagonal
27 C := (A@west * B@north) + (A * B) + (A@east * B@south);
28 elsif (Index1 = Index2 - 1) then -- compute diagonal 1
29 C := (A@west * B) + (A * B@south);
30 elsif (Index1 = Index2 - 2) then -- compute diagonal 2
31 C := A@west * B@south;
32 else -- zero all other indices
33 C := 0;
34 end;
35 end;

88

Listing 2.23: Tridiagonal Matrix Multiplication in ZPL Using Compact Arrays
1 program tridense;
2

3 config var n: integer = 100; -- assume n x n arguments
4

5 region Tri = [0..n+1, -1..1]; -- dense tridiagonal storage
6 Pent = [1..n, -2..2]; -- dense pentadiagonal storage
7

8 var A: [Tri] double; -- matrix A
9 B: [Tri] double; -- matrix B

10 C: [Pent] double; -- the product matrix, C
11

12 direction ne = [-1, 1]; -- northeast (acts as north)
13 sw = [1,-1]; -- southwest (acts as south)
14 east = [0, 1]; -- east
15 west = [0,-1]; -- west
16

17 procedure tridense();
18 [Pent] begin
19 /* Assume A and B’s boundaries are zeroed out */
20

21 /* one statement per diagonal in the product */
22 [,-2] C := A@east * B@ne;
23 [,-1] C := (A * B@ne) + (A@east * B);
24 [, 0] C := (A@west * B@ne) + (A * B) + (A@east * B@sw);
25 [, 1] C := (A@west * B) + (A * B@sw);
26 [, 2] C := A@west * B@sw;
27 end;

diagonal is the same as in the previous codes, but substitutes ne for north and sw for

south.

This implementation is attractive because it uses an amount of memory proportional to

the number of interesting values in the problem, rather than the conceptual problem space.

However, this has the disadvantage of making it more awkward to operate on tridiagonal

matrices in conjunction with traditional matrices. For example, adding a traditional

matrix to a tridiagonal matrix in this format would require the remap operator to transform

one index space to the other.

The next chapter will re-examine all of the sample codes in this section and further

evaluate their strengths and weaknesses in the context of a parallel implementation.

89

2.16 Related Work

This section describes alternatives to region-based programming that are used to express

array computations in other languages. Its focus is restricted to the indexing mechanisms

of sequential languages. Parallel languages will be covered in the related work section of

the following chapter.

2.16.1 Scalar Indexing

The oldest and most prevalent form of expressing array computation is scalar indexing

or array subscripting, as found in languages such as FORTRAN, its later incarnation as

FORTRAN 77 (F77) and more recent languages such as C [Mac87, Bac98, Sec78, KR88].

In each of these languages, basic operations such as assignment and addition are defined

only for scalar values, and promotion is not supported. As a result, operations on arrays

must be written to explicitly loop over the index space and reference the array’s values one

at a time. Scalar indexing allows the programmer to specify a single value per dimension

in order to specify a single array value. For example, adding two arrays might appear as

follows in F77:

do j = 1, n
do i = 1, m
C(i, j) = A(i, j) + B(i, j)

enddo
enddo

The primary disadvantage of scalar indexing is that it burdens the programmer with the

task of performing the explicit looping and subscripting required to express array compu-

tations. This can quickly become a tedious task that requires more keystrokes than it does

intelligence. Moreover, the loops required by scalar indexing describe a sequential order-

ing on the operations that runs counter to parallelism. This is not a problem in a sequential

context, but can complicate the parallelization of languages using scalar indexing in the

parallel domain.

90

Scalar indexing does have the advantage of being a very simple and general mechanism

for expressing array computations. For instance, there is no need for ZPL’s array operators,

nor its restrictions governing what types of expressions can and cannot interact. Moreover,

conformability rules in such a language are simple: since all arguments to an operator must

be scalars, the only check required is that all array dimensions are being indexed.

2.16.2 Vector Indexing

In the late 1950’s Kenneth Iverson developed a mathematical notation that was designed

to clarify some of the ambiguities that he felt standard mathematical notation contained.

Shortly thereafter, this notation evolved into APL (A Programming Language), one of the

earliest higher-level programming languages [Ive62, Mac87]. APL was the first pure array-

based programming language, since all data items in the language are arrays (scalars are

simply arrays of rank 0). APL’s arrays support vector indexing in which the programmer

supplies a vector of indices per dimension. The outer product of these vectors specifies the

indices of the array. In this way, array references no longer refer to a single value of the

array, but a subarray of values, or possibly the entire array. For example, matrix addition

would appear as follows in APL:

In this notation, represents a -element vector containing values from 0 to (sim-

ilar to ZPL’s Indexi arrays). Each element is incremented to use 1-based indexing to

be consistent with the Fortran implementation. Thus, the outer product of these vectors

causes each array reference to refer to elements . Addition () and

assignment () are promoted across the elements as in ZPL, and the sum is computed.

Although APL contained many elegant and revolutionary ideas, it has not remained in

widespread use over the years. Detractors find it too terse and unreadable, due primarily

to its large set of unique operators, most of which require non-standard characters (like the

“ ” used for assignment above). Though enthusiasts are quick to rush to its defense, it

91

remains largely unused and unknown today. Even so, its use of arrays as operators and

vector subscripting have had an influence on more modern languages including ZPL.

2.16.3 Array Slicing

Modern array-based languages have adopted syntax to support APL’s array operands with-

out so much generality and built-in support for mathematical operators. Many of these

languages have provided a syntax for accessing a regularly strided set of indices within

an array. This is known as array slicing or array sectioning, and represents an excellent

example of optimizing for the common case. Consider, for example, how few of the ZPL

programs from the previous section would require an APL-style index vector that was not

a simple -expression.

One language with support for array slicing is Fortran 90 (F90) [ABM 92], a successor

to F77. F90 allows the user to specify indices using a 3-tuple per dimension: [l:h:s].

These values are identical to the low, high, and stride values in ZPL’s sequence descriptors,

and they can be used to express a wide variety of simple APL-style -expressions. In F90,

serves as the alignment value, which was the fourth value in ZPL’s sequence descriptors.

Another language that supports slicing is Matlab, an interactive, interpreted matrix ma-

nipulation language [Mat93]. Matlab supports a slice notation similar to F90’s, but without

the stride value. In both languages, the low and high bounds may be omitted, which cause

the array’s declared bounds to be used. Omitting the stride in F90 results in a stride of 1.

Omitting the slice notation altogether causes the entire array to be referenced. Matrix addi-

tion would appear as follows in F90 and Matlab:

C(1:n, 1:n) = A(1:n, 1:n) + B(1:n, 1:n)

As in APL, both F90 and Matlab allow the programmer to use vector indexing, though

in practice this rarely seems to be used. For example, a five-element vector could be per-

muted in F90 using the following assignment:

X(1:5) = Y(/ 2,5,1,4,3 /)

92

Naturally, traditional scalar indexing may be used as well, should slicing or vector indexing

fail to express a desired array reference.

The primary advantage of array slicing over traditional indexing is that it is a more

concise means of specifying operations over arrays or subarrays, eliminating the need for

explicit loops for many array operations. Like scalar indexing, slices allow for more general

array interactions than ZPL’s regions, yet use a notation that is more concise and optimized

for the common case than that of APL’s vector indexing.

The chief disadvantage of array slicing is the syntactic overhead of specifying a region-

like set of indices for each array reference. Though small examples like matrix addition

are not so bad, slice notation can become rather cumbersome and error-prone in larger

array codes. In particular, the conformability requirements of array slices require the size

and shape of each array operand to match, causing redundant information to be supplied

with each array reference. Moreover, these conformability rules require more analysis

than scalar indexing or region-based indexing, both of which can be satisfied by simple

checks of the arguments (note that the related problem of bounds checking is common to

all approaches, and is not made simpler by any scheme).

2.16.4 Forall loops

A final array access mechanism that is often supported by languages to simplify scalar in-

dexing is the forall loop. This structure iterates over a multidimensional index range or

an arbitrary index set, typically in an unspecified order. In this sense, forall loops repre-

sent universal quantification much like regions, in that they generate a set of indices with

which to operate. Unlike regions, forall loops tend to use iterator variables like traditional

for loops. These iterators are typically used to access an array’s values using scalar index-

ing. Thus, forall loops can be considered a compact representation of a nested loop whose

iteration order is unconstrained.

FIDIL (FInite DIfference Language) [SH89, HC93] is an example of an array language

that uses forall loops. FIDIL was designed for use in scientific computation and supports

93

general index sets called domains. Domains need neither be rectangular nor dense, and

FIDIL supports computation over them using set-theoretic union, intersection, and differ-

ence operations. Domains are used both to specify the structure of arrays (maps), and to

provide index sets for FIDIL’s forall loops.

Fortran 95 [Geh96] also supports a forall loop structure that takes an array slice as its

bounds and iterates over the indices that it describes. In this context, the forall loop is much

more of a syntactic sugar, as there is no language-level support for index sets as in FIDIL

and ZPL.

2.17 Evaluation

To evaluate the impact of region-based programming on a program’s clarity, the sample

codes of this chapter are compared to sequential, hand-written implementations in C. Ap-

pendix A contains the source code for these C implementations for reference.

Each line of code in the ZPL and C implementations of the benchmarks is classified

as serving one of three purposes: (1) declaring a variable, procedure, or other identifier;

(2) computing the benchmark’s result; or (3) performing other non-essential work such as

I/O, initialization, timing, etc. This study only considers lines in the first two categories.

The graphs in Figures 2.15 and 2.16 indicate the number of useful lines and characters of

code used by each implementation. Characters were counted by removing all extraneous

spaces and whitespace from the codes, other than that which is required to represent the

algorithms in a simple, readable form.

The general trend shown in these graphs is that ZPL codes express computation with

a conciseness similar to C, both in terms of line- and character counts. These benchmarks

also indicate that the coding effort in the ZPL versions of these benchmarks tends to be

weighted more heavily towards declarations than computation. This is a result of ZPL’s use

of high-level named concepts like regions and directions to replace traditional loops and

indexing. Presumably, the overhead of these declarations will be lessened in longer codes

94

Jacobi Line Counts

12

35

12

14

0

10

20

30

40

50

C ZPL
Language

Li
ne

s
of

 C
od

e

declarations
computation

(a)

Jacobi Character Counts

591

255

255

191

0

300

600

900

C ZPL
Language

Ch
ar

ac
te

rs
 o

f C
od

e

declarations
computation

(b)

Mat-Vect Multiplication Line Counts

2
6

4

10
14 11

0

5

10

15

20

C ZPL (2D) ZPL (1D)
Language

Li
ne

s
of

 C
od

e

declarations
computation

(c)

Mat-Vect Multiplication Character Counts

82

226

82 57

270

125

0

100

200

300

400

C ZPL (2D) ZPL (1D)
Language

Ch
ar

ac
te

rs
 o

f C
od

e

declarations
computation

(d)

Figure 2.15: Conciseness of Sample Codes. These graphs display the number of useful
lines and characters required for the sample Jacobi and matrix-vector multiplication codes
in ZPL and C.

95

Matrix Multiplication Line Counts

6
108 6

2316

12
11

0

10

20

30

C ZPL
(SUMMA)

ZPL
(Cannon)

ZPL (PSP)

Language

Li
ne

s
of

 C
od

e

declarations
computation

(a)

Matrix Multiplication Character Counts

248
155

312 452

76117

143 238

0

100

200

300

400

500

600

700

C ZPL
(SUMMA)

ZPL
(Cannon)

ZPL (PSP)

Language

Ch
ar

ac
te

rs
 o

f C
od

e

declarations
computation

(b)

Tridiagonal Multiplication Line Counts

17
22 19

9

8
13 12

14

0

10

20

30

40

C ZPL (Mask) ZPL
(Shard)

ZPL
(Compact)

Language

Li
ne

s
of

 C
od

e

declarations
computation

(c)

Tridiagonal Multiplication Character Counts

437
253

261

290

490420

118

280

0

200

400

600

800

C ZPL
(Mask)

ZPL
(Shard)

ZPL
(Compact)

Language

Ch
ar

ac
te

rs
 o

f C
od

e

declarations
computation

(d)

Figure 2.16: Conciseness of Sample Codes (continued). These graphs display the num-
ber of useful lines and characters required for the sample normal and tridiagonal matrix
multiplication codes in ZPL and C.

96

where the same declarations can be used again and again, amortizing the cost of declaring

them over a larger code base. The experiments in Chapters 5 and 6 support this hypothesis.

The following paragraphs give a few notes for each benchmark.

The Jacobi Iteration

The Jacobi Iteration best demonstrates the benefits of region-based programming. While

most of the other benchmarks consist of a small number of array statements surrounded

by a single region, the Jacobi benchmark uses a number of diverse regions to establish its

boundary conditions. In the C code, each of these regions requires its own loop, demon-

strating the region’s concise support for array computation. Since most real-world codes

will tend to require many regions/loop nests to express a computation, this benchmark best

demonstrates the concise power that a few appropriate ZPL declarations can have.

Matrix-Vector Multiplication

C and ZPL represent matrix-vector multiplication using reasonably equivalent code sizes.

Once again, the ZPL representations tend to be slightly more concise in terms of computa-

tion due to the use of regions rather than loops.

Matrix Multiplication

Matrix multiplication represents a worst-case for ZPL, simply due to the difference in com-

plexity between sequential and parallel matrix multiplication algorithms. In particular, se-

quential C algorithms can simply iterate over the matrices and compute on them in-place.

In contrast, all of the parallel algorithms described by this chapter require some amount of

data movement and copying.

The SUMMA algorithm is ZPL’s most concise implementation and the only one that is

more compact than C’s triply-nested loop. Cannon’s algorithm requires significantly more

computation due to its skewing operation and cyclic shifts. It also requires additional decla-

97

rations to create the directions used to implement the shifting. The PSP algorithm requires

the greatest amount of declarations due to its use of 2D and 3D regions to describe its two

computational domains. The PSP computation itself is fairly concise in terms of lines, but

these lines are long due to the Indexi expressions used to implement the alignment of

arrays from 2D to 3D.

Tridiagonal Matrix Multiplication

The hand-coded C implementation of tridiagonal matrix multiplication uses a compact rep-

resentation of the matrices similar to the third ZPL implementation. As a result, these

two codes are the most comparable in size due to their similar approach. ZPL’s mask- and

shard-based approaches tend to require more computation due to the overhead of restricting

computation to the diagonals within the logical 2D index space. In contrast, the compact

ZPL and C implementations can trivially isolate a single diagonal.

Summary

In summary, ZPL can represent these simple algorithms as concisely as C. ZPL tends to re-

quire slightly less syntax to specify computation due to its use of regions to replace looping

and indexing. This effect is offset somewhat by ZPL’s more verbose syntax (e.g., Indexi

constants, the use of begin...end rather than curly braces). For the benchmarks stud-

ied here, ZPL tends to require more declarations than C, though it is expected that these

declarations will be amortized in larger benchmarks by the savings in computation.

It is crucial to keep in mind that the ZPL implementations of this section differ from

the C codes in one crucial way: they represent fully-functional parallel implementations

of the benchmarks, whereas the C codes can only be run on a single processor. For this

reason, regions must be considered a benefit to clarity, since they support the expression of

a more complex program using syntax that tends to be as concise as sequential C. As the

next chapter will show, this cannot be said for most parallel languages.

98

2.18 Discussion

2.18.1 Benefits of Regions

Though Section 2.16 argued that regions are somewhat less flexible and adaptable than

array indexing and slicing, they are not without their benefits. This section describes the

advantages that regions give programmers, syntactically and semantically.

Cleaner Elementwise Operations

Performing strict elementwise operations on arrays remains an extremely common case

in array-based programming. Though interesting programs will require more complex in-

teractions between their arrays, most large programs will still require many elementwise

operations in addition to the more complex ones. In these cases, regions represent a posi-

tive evolution in array reference syntax. Array slices can be seen as a factoring of F77 loop

bounds into the array references in order to optimize the common case of iterating over

an array in a regular manner. In the same spirit, regions can be thought of as factoring a

set of indices that describe the size and shape of slice-based array references into a single

prefixing slice—the region scope.

Table 2.8 shows a number of simple array statements written in F77, F90, and ZPL.

In the first row, a simple array addition is demonstrated. The F77 version requires explicit

loops and repetitive array indexing. The F90 version eliminates the loops, but requires

identical slices to be applied to each individual array reference. The ZPL version factors this

common slice into the region scope, leaving the array references unadorned and eliminating

a lot of redundant typing. Since elementwise operations constitute a common case, the

result is that many array references will be unadorned in ZPL.

99
Ta

bl
e

2.
8:

La
ng

ua
ge

Sy
nt

ax
Co

m
pa

ris
on

F7
7

F9
0

ZP
L

do
j

=
1,

n
do

i
=

1,
m

C(
i,

j)
=

A(
i,

j)
+

B(
i,

j)
en

dd
o

en
dd

o

C(
1:
m,

1:
n)

=
A(
1:
m,

1:
n)

+
B(
1:
m,

1:
n)

[1
..
m,

1.
.n
]
C

:=
A

+
B;

-
-

o
r

-
-

[R
]

C
:=

A
+
B;

do
j

=
1,

n
do

i
=

1,
m

A(
i,

j)
=

B(
i,

j-
1)

+
C(
i,

j+
1)

en
dd

o
en

dd
o

A(
1:
m,

1:
n)

=
B(
1:
m,

0:
n-
1)

+
C(
1:
m,

2:
n+
1)

[1
..
m,

1.
.n
]
A

:=
B@

[0
,
-1
]

+
C@

[0
,
1]
;

-
-

o
r

-
-

[R
]

A
:=

B@
we
st

+
C@

ea
st
;

do
j

=
1,

n
do

i
=

1,
m

A(
i,

j)
=

B(
1,

j)
en

dd
o

en
dd

o

do
i

=
1,

m
A(
i:
i,

1:
m)

=
B(
1:
1,

1:
n)

en
dd

o

[1
..
m,

1.
.n
]
A

:=
>>

[1
,
]

B;

-
-

o
r

-
-

[R
]

A
:=

>>
[T
op
Ro
w]

B;

do
j

=
1,

n
A(
1,

j)
=
0

do
i
=

1,
m

A(
1,

j)
=

A(
1,

j)
+

B(
i,

j)
en

dd
o

en
dd

o

A(
1:
1,

1:
n)

=
0

do
i

=
1,

m
A(
1:
1,

1:
n)

=
A(
1:
1,

1:
n)

+
B(
i:
i,

1:
n)

en
dd

o

[1
,
1.
.n
]

A
:=

+<
<[
1.
.m
,

]
B;

-
-

o
r

-
-

[T
op
Ro
w]

A
:=

+<
<[
R]

B;

do
j

=
1,

n
do

i
=

1,
m

A(
i,

j)
=

A(
B(
i,

j)
,

C(
i,

j)
)

en
dd

o
en

dd
o

do
j

=
1,

n
do

i
=

1,
m

A(
i,

j)
=

A(
B(
i,

j)
,

C(
i,

j)
)

en
dd

o
en

dd
o

[1
..
m,

1.
.n
]
A

:=
A#

[B
,
C]
;

-
-

o
r

-
-

[R
]

A
:=

A#
[B
,

C]
;

100

Clearer Array Reference Patterns

When array operations are not strictly elementwise, regions still serve a purpose by describ-

ing the size and shape of the subarray accesses. Array operators express any modifications

to these base indices for a particular array expression. This has the effect of syntactically

factoring the redundant part of each array reference out of the main computation, leaving

only indications of how each reference differs.

As an example, consider the second row of Table 2.8, in which shifted references to

and are summed. In F77 and F90, the array indices and slices encode redundant

information. In particular, F77 specifies that each access is based on index , while F90

specifies three slices, each of which are in size. In ZPL, the common aspects of

these array references—the base indices—are factored into the region, leaving only

the differences in how the arrays are accessed, using the @ operator. By removing much of

the redundant clutter, the meaning of the statement is clearer.

As further evidence, consider each column of the table one at a time to see how long

it takes you to identify the operation that is being performed by each statement. Note that

very different array operations end up looking rather similar in F77 and F90, whereas ZPL

does a better job of distinguishing them.

Fewer Loops Required

In F77, programmers expect to use loops and indices. In F90, many array operations no

longer require loops due to the availability of array slicing and vector indexing. However,

as the last two entries in Table 2.8 show, these mechanisms are not strong enough to express

floods, partial reductions, or remap operations without using loops. The floods and partial

reductions fail due to the requirement that the two sides of an operation must have the same

size and shape. This makes it illegal to add an arbitrary number of rows to a single row

without a loop. The remap operator cannot be written succinctly due to the fact that F90

has no mechanism for taking the dot product of vector indices rather than the cross product.

101

It should be noted that F90 supports intrinsic functions such as SUM, RESHAPE, and

TRANSPOSE that may be used to write such statements in a single line. However, these

functions should be considered part of a standard library context rather than a syntax-based

means for expressing array computation. Similarly, F95’s forall loops allow such state-

ments to be written on a single line, but still rely on a loop-style concept (albeit one that

syntactically begins to resemble the region).

Naming Improves Readability

The fact that regions can be named greatly improves the readability of ZPL code, since it

allows index sets to be given identifiers that are meaningful to the programmer. Column 3

in Table 2.8 shows each ZPL statement written both with and without identifiers. These

examples demonstrate that names can improve the clarity of each statement. Note that the

ability to name array slices or index ranges could improve the readability of F90 codes

somewhat, but would not produce a ZPL-equivalent syntax.

Regions Promote Code Reuse

The fact that regions are dynamically scoped allows procedures to be written in a more

generic way. As a simple example, note that the ZPL implementation of the SUMMA

algorithm (Figure 1.2) could be moved into a procedure that takes only the size of the

inner dimension as an argument and inherits the matrix size from the callsite. In contrast,

a generic F90 implementation would require the bounds for each dimension to be passed

in as arguments. Furthermore, even when an algorithm does require more than a single

inherited region (as in the Cannon and PSP algorithms), regions represent a concise means

of bundling index information for passing to another procedure.

102

2.18.2 Region Deficiencies

Though regions have many benefits, there are also some deficiencies that should be ad-

dressed in future region-based languages including Advanced ZPL. This section briefly

describes some of them.

Regions are Rectangular

One obvious limitation of regions is their regular and rectilinear nature. Though masks and

shattered control flow can be used to restrict a region to an arbitrary subset of indices, these

concepts tend to require time and space proportional to the region’s size in order to compute

the irregularity. For example, the mask- and shattered control flow-based implementations

of tridiagonal matrix multiplication require time and space rather than the time

and space that the computation requires.

One partial solution would be to expand the region specification to allow Indexi ex-

pressions in a region’s index ranges. For example, a lower triangular matrix could be repre-

sented using the region [1..n, Index1..n]. Similarly, a tridiagonal matrix could be

represented using [1..n, (Index1 - 1)..(Index1 + 1)]. The main challenge

to such an approach is the fact that such regions cannot be specified using a cross product

of sequence descriptors. Therefore, they would require a different formal specification and

implementation. Legality issues would also be a concern in such a scheme.

Chapter 6 presents a different solution to this problem, in the form of sparse regions.

Inability to Capture Dynamic Regions

As currently defined, ZPL allows users to open dynamic region scopes, but not to “capture”

them in a way that allows them to be reused again later. Rather, they must be explicitly

redefined for each use. As a motivating example, imagine that a program dynamically

calculates three subregions of an array in which it wants to perform further computation.

It would be nice to have some way of snapshotting these three index sets using named

103

regions so that they could be reused later, rather than explicitly maintaining their bounds

using scalar variables.

This lack also makes it difficult to declare persistent arrays using a dynamic region.

Arrays that are local to a procedure may be declared using the dynamically covering region

or an explicit dynamic region, but such arrays will not persist once the procedure returns.

This restricts the user’s ability to declare an array over the three subregions of the previous

paragraph, for example, such that they could be used throughout the program naturally.

Inability to Redefine Regions

A related problem is that named regions cannot be redefined. In a sense, ZPL’s regions can

be viewed as constant sets of indices that cannot be altered during the program’s execution.

For some applications in which a problem size cannot be known at configuration time, it

would be nice to incrementally grow regions to meet a program’s specific requirements

dynamically. For example, while a 1D region can be used to implement an array-based

list in ZPL, the list cannot be grown using standard array resizing techniques because the

bounds of its defining region cannot be modified.

Regions are Inflexible

In ZPL, regions are technically neither a type, nor a first-class object. This limits their use

in a number of ways: programmers may not declare collections of regions using indexed ar-

rays or records; they may not assign regions; they may not pass regions to a procedure; etc.

This design choice was made in order to provide the compiler with as much information

about the regions as possible. The idea was to start with a restricted region definition and

then broaden it as much as the compiler could tolerate without sacrificing performance or

the ability to effectively parallelize a ZPL program. During the past decade, virtually no

relaxation of these restrictions has taken place, though it has seemed increasingly feasible

to do so.

104

2.18.3 Proposed Support for Regions as Values

One solution to many of the previous section’s problems would be to promote the region

concept to that of a first-class value. In doing so, traditional region declarations would be

interpreted as declarations of constant or configuration regions. That is, the following two

declarations would be considered equivalent to one another:

region R = [1..m, 1..n];
config var R: region = [1..m, 1..n];

Any regions for which ZPL’s current rules are overly strict could be declared as variables

of type region, allowing them to be assigned dynamically, modified, or grown. Parallel

arrays declared using region variables would be reallocated after the region was assigned,

preserving any values in the intersection of the old and new index sets. Procedures could

be written with formal parameters of type region. Moreover, types could be created that

have region components, such as indexed arrays of regions and records with region fields.

The primary liability of this scheme is that current ZPL optimizations may be compro-

mised due to an increased amount of confusion over a region’s definition. For example,

in the presence of region assignments and aliasing, will the compiler be able to determine

whether a region’s dimension is floodable, singleton, or normal? What about its rank? It

seems reasonable to be optimistic about these issues since the absence of pointers should

make most of a region’s salient features statically detectable using interprocedural analysis.

Even in the worst-case, such an approach is worthy of more study in order to attempt to

support more general region-based programming.

2.18.4 Proposed Support for User-Defined Region Operators

One feature that I believe is missing from the ZPL language is the ability for users to

define their own region operators. While the region operators supported by ZPL form a

useful basis set, it is not difficult to conceive of other operators that might also benefit a

programmer. Rather than hoping to supply all region operators that a user could want, it

105

Listing 2.24: Proposed Syntax for User-Defined Region Operators
1 postfixregionop grow(delta: integer; var l, h, s, a: integer);
2 begin
3 if (delta < 0) then
4 l += delta;
5 else
6 h += delta;
7 end;
8 end;
9

10 direction nw = [-1,-1];
11 se = [1, 1];
12

13 region R = [1..m, 1..n];
14 BigR = [R grow nw grow se]

makes more sense to give the user the ability to define custom operators by describing the

effect of a value on a sequence descriptor.

For example, I might define a grow region operator that pulls a region’s corner in the

specified direction without changing its stride or alignment. Listing 2.24 shows proposed

syntax for such an operator. Lines 1–8 define the grow operator by indicating the delta

value’s effect on the four-tuple sequence descriptor (which could be expressed using a

record type rather than four scalar variables). The region operator could then be used to

define BigR as shown in line 14, rather than by explicitly specifying its bounds.

Such support seems like a useful and simple extension to ZPL as it currently stands.

One important side-effect that this might have is to require parenthesization to indicate

operator precedence in a region expression. ZPL’s built-in region operators are associative,

so parenthesization is neither required nor allowed.

2.18.5 Implicit Storage Considered Frustrating

One feature of ZPL that has not been described in this chapter is its support for implicit

storage. The implicit storage concept causes certain specifications of an array’s boundary

106

conditions to implicitly extend the amount of memory allocated for it. For example, in the

Jacobi iteration of Listing 2.15, variable A can be declared over region R, and the initializa-

tion of its borders using of regions would cause its storage to automatically be extended

by a row and column in each direction.

This feature was motivated by the observation that many ZPL programs use two re-

gions for each problem size, one for the computation space and a second that extends the

computation space by a few extra rows or columns to describe the array’s data space with

boundaries. For example, most of the sample programs of Section 2.15 exhibit this charac-

teristic. Therefore, it was believed that implicit storage would reduce the number of regions

that programmers would have to declare, saving them some trouble.

In the long-run, it has turned out quite the opposite. Implicit storage allocation contin-

ues to be a confusing issue to most programmers due to the fact that (1) the rules are not

as clear to them as they should be, (2) the rules are not always as general or intuitive as

they ought to be, and/or (3) the fact that implicit storage is invisible in the program makes

it hard to debug or even feel reassured that the expected behavior is going to take place.

More questions and bugs have probably been addressed due to misunderstandings related

to implicit storage than any other concept in ZPL. Most programmers eventually give up

on the idea and simply explicitly declare the complete memory that their arrays require as

I have done in this chapter’s sample codes.

As a result of these experiences, I believe that implicit storage allocation is a bad idea.

Users are accustomed to explicitly declaring the type of their variables, which includes the

sizes of their arrays. While giving them a mechanism to handle the common case with one

less identifier is an admirable idea, it has caused more confusion than it is worth. In this

sense, implicit storage seems much like optional variable declarations [Mac87] and should

be similarly avoided.

107

2.18.6 Scalar Issues

For the most part, ZPL’s scalar concepts are not particularly interesting or inventive. They

provide basic functionality without many surprises. This section touches on a few notewor-

thy characteristics.

Configuration Variables

The configuration variable is ZPL’s most interesting scalar concept. It has proven extremely

useful as a means of specifying a value that a programmer will want to change from run to

run, but which the compiler can use as a basis for optimization. This makes programmers’

lives easier by not requiring them to create and maintain a separate executable per program

configuration. Yet, it provides more semantic flexibility than the const keyword in C,

which requires its initializer to be statically specifiable. Having worked with ZPL for a

number of years, I often find myself wishing that other languages had a concept that was

equivalent to the configuration variable.

The Lack of Pointers

Up to this point, the lack of pointers in ZPL has kept the language clean and easy to analyze.

Furthermore, the ZPL applications that have been studied to this date have not suffered due

to the lack of pointers. As the language strives to support more irregular, graph-based

data structures, some sort of pointer mechanism will be required. It will be an interest-

ing challenge to see whether such a mechanism can be supported in a clean, high-level

way analogous to regions, or whether such data structures necessarily require pointers and

the difficulties that they entail. An interesting starting point for anyone approaching this

problem would be Vassily Litvinov’s exploratory work in Graph ZPL [Lit95].

108

Parameter Specifications

One key place where I find ZPL’s scalar syntax lacking is in its lack of richness for de-

scribing how a procedure’s parameter will be used. In particular, the by-reference var

specification might mean any of the following: (1) I will be sending this value into the pro-

cedure, modifying it there, and want the resulting modification to be reflected in the actual

parameter; (2) The current value of this parameter is unimportant, but I will be using this

parameter as a means of returning a new value calculated within the procedure; or (3) This

is a very large data structure and the compiler should not make a copy of it when passing

it into the procedure, though I will not be modifying it. There are many instances during

ZPL compilation in which the compiler would like to differentiate between these meanings

for optimization purposes. While many cases can be differentiated by analyzing procedure

definitions, aliasing can complicate matters and foil the analysis. My sense is that a better-

designed set of parameter tags, perhaps similar to those provided by Ada [TD97], would

not represent a hardship to the user and would support better communication between the

programmer and compiler.

2.19 Summary

This chapter has defined the concept of the region and explained its use in defining ZPL.

Regions represent a succinct means of describing a set of indices for use in declaring arrays

and expressing array computation. This chapter argues that regions have many syntactic

benefits, including the elimination of redundant indexing expressions and an emphasis on

different array access styles. However, the most important benefits of regions are related to

their use in parallel computing. The next chapter describes these benefits.

