The High-Level Parallel Language ZPL | mproves Productivity and Perfor mance

Bradford L. Chamberlain*

Sung-Eun Choi?

Steven J. Deitz* Lawrence Snyder*

*University of Washington fCray Inc. #LLos Alamos National Laboratory
Seattle, WA 98195 Seattle, WA 98104 Los Alamos, NM 87545
{brad,deitz,snyder } @cs.washington.edu bradc@cray.com sungeun@lanl.gov

Abstract

In this paper, we qualitatively address how high-level
parallel languages improve productivity and performance.
Using ZPL as a case study, we discuss advantages that stem
from a language having both a global (rather than a per-
processor) view of the computation and an underlying per-
formance model that statically identifies communication in
code. We also candidly discuss several disadvantages to
ZPL.

1. Introduction

In the spring of 2003, we encountered a curious bug in one
of the NAS parallel benchmarks. To evaluate the scalability of
ZPL, we were comparing our ZPL implementation of the NAS CG
benchmark against the provided Fortran+MPI implementation on
an increasing power-of-two number of processors of a new 1024-
node cluster at Los Alamos National Laboratory (LANL). Both im-
plementations ran flawlessly on up to 512 processors but, on our
first 1024 processor run, the Fortran+MPI failed to verify cor-
rectly even as the ZPL worked. A day after we reported the failed
verification to NAS, they were able to produce identical erroneous
results on an IBM SP.! It wasn’t a strange interaction between
LANL’s experimental cluster and ZPL, but rather a bug in the
long-standing Fortran+MPI benchmark...

* % %

ZPL is a high-level parallel programming language de-
veloped at the University of Washington. Our implementa-
tion is based on a compiler that translates ZPL programs
to C code with calls to MPI, PVM, or SHMEM, as the
user chooses. Since the first release of this compiler in
1997, there have been significant improvements as we have
evolved the language. This paper discusses some of the
lessons we have learned over this time.

1Personal Communication. Rob F. Van der Wijngaart. April 9, 2003.

Like Co-array Fortran, High Performance Fortran, Ti-
tanium, Unified Parallel C and other parallel languages,
ZPL offers scientists who are frustrated by MPI a much
improved parallel programming experience. The anecdote
above, which we will come back to later in this paper, il-
lustrates this point and is the sort of issue we will discuss
in this paper. The point of this anecdote is not that the pro-
vided Fortran+MPI benchmark was poorly written. Indeed,
the NAS benchmarks are well-known for being well-written
and highly-optimized. The point, as we will see later, is
that the high-level nature of ZPL virtually eliminates a wide
class of parallel programming bugs, thus making parallel
programming easier.

Focusing on ZPL, this paper addresses how high-level
parallel languages improve both productivity and perfor-
mance. Throughout this paper, we will present anecdotes,
code segments, and qualitative arguments as evidence of
this improvement. The purpose of this paper is not to ad-
vertise ZPL but rather to encourage researchers to explore
the space of language abstractions which ZPL champions.

This paper is organized as follows. In the next section,
we characterize the design space of ZPL. No introduction to
the language is offered; the interested reader is instead re-
ferred to the literature [4, 21]. In Section 3, we examine as-
pects of ZPL that increase productivity and performance. In
Section 4, we discuss limitations of ZPL and, in Section 5,
we conclude.

2. Characterizing ZPL

Figure 1 shows C+MPI and ZPL implementations of a
trivial benchmark. The idea behind the benchmark is to it-
eratively replace each element in a 1D array with the aver-
age of its two neighboring elements until the change be-
tween the values in the array on successive iterations is
small. Though admittedly contrived, the codes effectively
illustrate two important characteristics of ZPL.

First, ZPL is a global-view parallel language. The pro-
grammer writes code that largely disregards the processors
that will execute it. Thus array A is declared based on the

#include <stdio.h>
#include <stdlib .h>
| #include "mpi.h”

int n;
double *A, xTmp;
const double epsilon = 0.000001;

int main(int argc, charx argv[]) {
int i, iters;
double delta;
| int numprocs, rank, mysize;

| double sum; program line;
| MPI_Init(&argc, &argv); config var
| MPI_Comm_size (MPI.COMMWORLD, & numprocs); n -ginte er = 6:
| MPI_Comm_rank (MPI.COMM_WORLD, &rank); ’ g -
if (arge !=2) { i
printf (”usage:_line.n\n"); reglo:n[l n
) exit(1); BigR = [0..n+1];
n = atoi(argv[1l]); i i
| mysize = n = (rank + 1) / numprocs — d';zzilo_n[l].
| n % rank / numprocs; west = [—1];
A = malloc ((mysize+2)* sizeof (double)); - '
forA([:]=:Oa (l)_<= mysize; i++) var
| if (rank == numprocs — 1) A, Tmp @ [BigR] double;

A[mysize+1] = n + 1.0;

Tmp = malloc ((mysize+2)x sizeof (double)); constant

epsilon : double = 0.000001;

iters = 0;
doigers++- procedure line ();
| if (rank < numprocs—1) variters . integer -
| MPI_Send(&(A[mysize]), 1, MPI.DOUBLE, rank + 1, delta : doungIe"
1, MPI.COMM_WORLD); begin : '

if (rank > 0)
MPI_Recv(&(A[0]), 1, MPI.DOUBLE, rank — 1,
1, MPI.COMM_WORLD, MPI_STATUS_IGNORE);

[BigR] A := 0;
[n+1] A :=n + 1;

if (rank > 0) E;eeirsre;):ea(t);
MPI_Send(&(A[1]), 1, MPI.DOUBLE, rank — 1, | Tepeat

1, MPI.COMM.WORLD);
if (rank < numprocs—1)
MPI_Recv(&(A[mysize+1]), 1, MPI.DOUBLE, rank + 1,
1, MPI.COMM.WORLD, MPI_STATUS_IGNORE);

Tmp := (A@east + A@west) / 2.0;
delta := +< < abs(A — Tmp);
A = Tmp;

until delta <= epsilon;

fo'rl'm(pl[ii E A[T:Hyf';?h'ﬁ;)/ 2.0 writeln(”Iterations:.%d”:iters);
delta = 0.0; end;
for (i = 1; i <= mysize; i++)
delta += fabs(A[i] — Tmp[i]);
| MPI_Allreduce(&delta, &sum, 1, MPI_DOUBLE,
| MPI_SUM, MPI.COMM_WORLD);
| delta = sum;
for (i = 1; i <= mysize; i++)
Ali] = Tmp[i];
} while (delta > epsilon);
| if (rank ==
printf(”Iterations:.%d\n”, iters);
| MPI_Finalize ();
}
(@) (b)

Figure 1. A trivial benchmark written to compare (a) C+MPI and (b) ZPL. This benchmark measures
how many iterations are needed for an array to reach a fixed point. The user sets n, the size of the
problem, at the command line. The program starts by initializing the array to zero with left and right
borders set to 0 and n+1 respectively. On each iteration, the elements in the array are replaced by the
average of their two neighbors. The program terminates when the sum of the changes is less than
the fixed constant epsi | on. The number of iterations is reported. The use of the italics in the C+MPI
code indicates the changes that are necessary to make when parallelizing the sequential language
C using MPI. The vertical bars on the left indicate new lines of code; in addition, nysi ze replaces
occurrences of n.

global bound of n + 1. In contrast, C+MPI is a local-
view parallel language, and array A is declared based on
per-processor bounds of mysi ze + 2. The highlighted
parts of the C+MPI code show the changes that needed to
be made from a sequential C code and the burden that is
placed on the local-view programmer. In addition to using
local bounds to size arrays on a per-processor basis, inter-
processor communication must be explicitly managed in te-
dious detail.

It is important to note the difference between global-
view languages such as HPF [14] and ZPL and local-view
languages with global address spaces such as Co-array For-
tran [19], Titanium [24], and UPC [3]. The latter are some-
times referred to as fragmented languages because they re-
quire programmers to divide the expression of their compu-
tation between the processors in an SPMD style of program-
ming. They are significantly easier to use than C+MPI be-
cause of their global address space but, unlike global-view
languages, they require the user to manage low-level syn-
chronization.

Second, despite its global view, communication is ex-
plicit in ZPL. The details of communication are managed
by the compiler, but the ZPL programmer is readily aware
of where communication is induced. This provides a sim-
ple, but powerful performance model called the what-you-
see-is-what-you-get (WYSIWYG) performance model [5].
The only communication in the simple ZPL program in
Figure 1 is induced by the at operator (@, which shifts
data across processor boundaries, and the reduce opera-
tor (op<<), which determines the sum of values distributed
across all the processors.

ZPL is the only language to offer both properties. In the
most well-known global-view language, High Performance
Fortran, the programmer achieves parallelism by supplying
directives of distribution and parallel computation. As a
parallel extension to Fortran 90, its easy to reason about
what is computed. However, communication requirements
for a given statement are invisible in the syntax, thus mak-
ing it a challenge for both programmers and compilers to
optimize communication. On the other hand, local-view
languages tend to make communication explicit but at the
expense of the global view of computation.

3. Advantages of ZPL

This section is composed of seven parts, each of which
addresses some aspect of the advantage of high-level paral-
lel programming languages. The first two parts look at ad-
vantages of having a global view of computation; it makes
parallel programming easier and provides for more general
parallel programs. The next two parts focus on language ab-
stractions; structural abstractions improve programmability
while orthogonal abstractions make it easy to tune paral-

lel codes. The fifth part discusses how a high-level perfor-
mance model makes it easy to maintain fast code, and the
sixth part discusses how high-level languages stop program-
mers from over-specifying code and keeping the compiler
from making effective optimizations. In the final part, we
show some performance results which suggest that the bot-
tom line of high-performance is still achievable.

3.1. Global-view languages make parallel program-
ming easier

As a case in point, we will elaborate on our introduc-
tory story. The NAS Parallel Benchmarks (NPB) [1] have
long served as a way for us to evaluate the performance of
ZPL. These benchmarks were designed to assist in evalu-
ating the performance of parallel supercomputers. Derived
from Computation Fluid Dynamics (CFD) applications and
implemented in Fortran or C and MPI, they are “intended
to be run with little or no tuning, [and] approximate the
performance a typical user can expect for a portable par-
allel program on a distributed memory computer.” [1] This
statement is actually too modest. These benchmarks are
highly-tuned and represent the upper end of achievable per-
formance with a message-passing library. The benchmarks
are well-written, stable programs that garner a substantial
degree of respect in the high-end computing community.

The NAS CG benchmark estimates the largest eigen-
value of a symmetric positive definite sparse matrix by the
inverse power method. The bug we encountered on 1024
processors was all the more curious because of the relative
age of CG. Not only did the CG benchmark run flawlessly
on up to 512 processors, but it had also been used for years
in evaluating parallel systems. The 1024-processor bug was
found to be in the initialization and was fixed by the NAS
team within a week.? What happened was that an array used
later in the computation and treated as scratch in the initial-
ization was sized based on the problem size divided by the
number of processors. As the number of processors grew, it
became too small to fit the initialization data.

Because of the local view of computation, the array was
sized based on local per-processor bounds. Given a global-
view language like ZPL, that same array would be sized
based on the global bounds. Had the programmer made a
similar array sizing mistake in ZPL, the benchmark would
have failed on any number of processors, not just when the
number became large. Thus global-view languages make
the development of working parallel programs easier.

Global-view languages make parallel programming eas-
ier for many other reasons too. Here is another story of
using ZPL.3 A professional programmer at HP with over “5
years of experience ... doing regular product development

2Personal Communication. Haogiang Jin. April 10, 2003.
3Personal Communication. George Forman. December 5, 2003,

CG |

300 800

E—— comm
— decls
— COMpP

Lines of Code
Lines of Code
8
1
g

F+MPI ZPL F+MPI ZPL

Figure 2. Charts showing line counts of the
Fortran+MPI and ZPL implementations of the
NAS CG and FT benchmarks. The counts are
subdivided into lines used for communica-
tion, declarations, and computation. These
counts are being reprinted from a previous
paper which can be consulted for more de-
tailed information on the ZPL implementa-
tions of these benchmarks [11].

work” wrote a code to test clustering algorithms. “It was a
code he cared about and had cultivated for many research
experiments over the course of a year+ for testing different
kinds of clustering. It was tuned for performance, because
he had to do many runs for research significance.” The core
of the computation was 355 lines but, by describing it in
Matlab, the programmer was able to explain it to a second
HP programmer easily.

This second programmer, having worked on ZPL in the
past, was eager to try writing the code in ZPL. Sequential
runs took copious amounts of time, and both researchers ex-
pected they could achieve near linear speedup. In roughly
6 hours, the second programmer had the ZPL code work-
ing. It was 73 lines. Not only did it show nearly linear
speedup [25] but, to the C programmer’s surprise, its se-
quential performance was better than that of the optimized
C code. This application helped the HP researchers demon-
strate that clustering code across continents, even with bad
network latency, is better than shipping data to local clus-
ters [13].

Though lines of code is not an ideal metric for evaluat-
ing a parallel programming language, it does provide some
quantitative measure of programmability. Figure 2 counts
the number of lines of code in the timed portions of the
NAS CG and FT benchmarks. The ZPL codes require less
than half the number of lines used to write the equivalent
Fortran+MPI. Inspecting the codes reveals similar complex-
ities and simplifications as in this paper’s examples, yet on
a larger scale. This is a testament to how much easier it is
to use ZPL.

3.2. Global-view languages provide for more gen-
eral parallel programs

To keep MPI programs from requiring even more lines
of code, they are often written with assumptions about the
problem size or the number of implementing processors.
For example, these may both be required to be powers of
two. For the provided Fortran+MPI implementations of the
NAS CG, FT, and MG benchmarks, the number of proces-
sors is required to be a power of two. In contrast to this
restriction to the Fortran+MPI versions, the ZPL program
can run on a non-power-of-two number of processors.

These assumptions in MPI are not surprising. They
greatly simplify the implementation and permit optimiza-
tions that would not be possible in the more general case.
However, there are times when one wants to run on a non-
power of two number of processors. For example, given
a 64 processor machine, scientists might not want to wait
for a 16 processor job to finish if their programs could run
on the 48 available processors sooner. Also, due to budget
constraints, machines are often not composed of a power-
of-two number of processors.

Modifying an MPI code to introduce such flexibility can
often impact all aspects of the code. Moreover, as illustrated
in Figure 6 and seen in the literature [7], running the more
general ZPL version of the CG, FT, and MG benchmarks
on a non-power-of-two number of processors results in im-
provements over the next smallest power-of-two number of
processors for the Fortran+MPI benchmark.

3.3. Structural abstractions improve programma-
bility

Sparse problems comprise a challenging and crucial
class of computation in high-end computing. Yet it is im-
portant to remember that the sparsity of an array or matrix
relates to its potential for optimized implementation rather
than the fundamental operations it supports. As an exam-
ple, matrix-vector multiplication is a mathematical oper-
ation whose definition is independent of whether the ma-
trix operand is sparse or dense; its sparsity merely provides
an opportunity for reducing the computational and storage
overheads of the operation.

Most languages fail to support abstractions for sparse
data structures, placing the effort of exploiting sparsity on
the programmer rather than the tools. Programmers must
build their own data structures to represent sparse arrays and
this change in representation forces a corresponding change
to the computation itself. As an example, consider the For-
tran codes in Figure 3(a) which implement matrix-vector
multiplication for a dense array and for a sparse array us-
ing compressed row storage. Note that the change from
sparse to dense is pervasive in the code. The 2D array a

DENSE

real p(n), w(n)
real a(n,n)

do j = 1,numrows
(a) sum = 0.d0
do k = 1,numcols
sum = sum + a(j,k)xp(k)
enddo
w(j) = sum
enddo

region R = [1..n, 1..n];
RowVect = [, 1..n];
Colvect = [1..m, x];
(b) var M: [R] double;

V: [RowVect] double;
S: [ColVect] double;

[ColVect] S := +<<[R] (M % V);

SPARSE

real p(n), w(n)
real a(nnz)

integer colidx(nnz)
integer rowstr(n)

do j = 1,numrows
sum = 0.d0
do k = rowstr(j), rowstr(j+1)—1
sum = sum + a(k)«xp(colidx(k))
enddo
w(j) = sum
enddo

region R = [1..
RowVect
ColVect

, 1..n] where /x pattern x/;
[+, 1..n];
[1..m, x];

n s

var M: [R] double;
V: [RowVect] double;
S: [ColVect] double;

[ColVect] S :=+<<[R] (M * V);

Figure 3. Dense and sparse implementations of matrix-vector transpose in (a) Fortran+MPI and

(b) ZPL

becomes a 1D array of values with two integer vectors to
provide directory information. This forces the inner loop to
be restructured to iterate properly over the directory, index
a, and index into p using an indirect index. This represents
a substantial modification to the code considering that the
mathematical operation being expressed has not changed.
The problem is exacerbated in parallel codes where com-
munication code must also be rewritten to deal with sparse
structures.

In contrast, ZPL supports sparse arrays and matrices as
a fundamental concept, allowing programmers to specify
an array’s sparsity as part of the declaration of its size and
shape [8]. This results in minimal impact on the compu-
tation itself. Consider the ZPL implementations of sparse
and dense matrix-vector multiplication in Figure 3(b). By
isolating the impact that such a simple conceptual change
has on the code, the programmer can easily switch between
sparse and dense representations with little penalty. For ex-
ample, in the NAS MG benchmark, the input array V' is
truly sparse, containing only 20 non-zeroes in its 5123 el-
ements for class C. Using a sparse representation can im-
prove the space and computational costs associated with V/,
yet making this change requires significant effort in most
languages and as a result, most implementations do not
bother. In ZPL the change is trivial, reducing the overall
memory footprint of the program by 1/3. As a second ex-
ample, the NAS FT benchmark checks its results by taking a
sparse walk through a dense array. Representing this subset
of values directly using a sparse region is a simple change in
ZPL and improves performance by making the parallelism

more explicit.

By separating the specification of sparsity from its use
in computation, the compiler is also given increased flexi-
bility in its choice of sparse data structure implementations.
The ZPL compiler automatically tunes its sparse represen-
tation based on the requirements dictated by its usage in the
code [4]. One could furthermore imagine allowing the user
to specify a preferred sparse data structure as part of the ar-
ray’s declaration. In conventional languages where the user
must manage sparsity explicitly, such changes tend to affect
every line of code that refers to the array, violating the gen-
eral principle of separating data structure from algorithm.

3.4. Orthogonal abstractions make it easy to tune
parallel codes

Significant changes in performance can be realized by
fine-tuning a parallel code after it is written. For example,
a programmer could want to change the ratio between the
number of processors in the column and row dimensions of
a 2D processor grid. In the NAS CG benchmark, this re-
sults in improved performance when the data-to-processor
ratio is large. In the Fortran+MPI implementation, this is a
difficult change but, in the ZPL implementation, it is trivial.

Figure 4 shows the code involved in transposing a row
to a column in Fortran+MPI and ZPL. Because the row
and column arrays are replicated across their dimension of
the transpose array, it makes sense, for performance of the
transpose, to use a 1:1 or 2:1 row-to-column processor lay-
out in the 2D processor grid. The 1:1 ratio is always ideal,

if (12npcols .ne. 0)then
call mpi_irecv(q, exch_recv_length,
dp_type, exch_proc, 1,

mpi_comm_world, request

call mpi_send(w(send_start), send_len,
dp-type, exch_proc, 1,
mpi_comm_world , ierr)
call mpi_wait(request, status, ierr)
else
do j=1,exch_recv_length
a(i) = w(j)
enddo
endif

@)

ierr)

[Row] W := P#[Index2, srcindex];

(b)

Figure 4. NAS CG transpose code in (a) Fortran+MPI and (b) ZPL.

but if we want to run on an odd power-of-two number of
processors, e.g. 8, then sometimes we need to use a 2:1
ratio, e.g. a 4 x 2 processor grid. In these cases, the com-
munication pattern is one-to-one. Each processor needs to
send data to only one processor and needs to receive data
from only one processor.

The Fortran+MPI code, because of its low-level of ab-
straction, cannot keep the processor grid orthogonal to the
computation. Thus the one-to-one communication pattern
is unyielding. In ZPL, on the other hand, if the processor
grid has a 2:1 or 1:1 ratio, the one-to-one communication
pattern is achieved, but the processor grid is not restricted
to having this ratio. This is useful for the part of the code
that implements the sparse computation. It turns out, for
the sparse computation, that a 1:2 or even a 1:4 ratio, im-
proves the performance of this part of the code. If the data-
to-processor ratio is high then the overall performance of
the code improves since the sparse computation, rather than
the transpose, is the bottleneck.

3.5. A high-level performance model makes it easy
to maintain fast code

Wavefront computations are common in scientific appli-
cations. A wavefront computation is one in which the value
of each data element is dependent on one or more values
computed in previous iterations of the loop nest. Though
inherently serial, pipelining is a well known, but tedious,
technique for efficient parallelization of wavefront compu-
tations [9, 23, 15].

The Accelerated Strategic Computing Initiative’s (ASCI)
SWEEP3D benchmark solves a three dimensional neu-
tron transport problem. Figure 5 compares the ASCI For-
tran+MPI and ZPL implementations of the core computa-
tion. The Fortran version is simplified for improved clarity.
As always, the reduction in code size is dramatic (over three
times). Here we will focus on the pipelining itself.

The Fortran version assumes that the problem is only dis-
tributed over two (i and j) of the three dimensions. Conse-
quently, the k dimension is treated differently than the other

two when the computation is actually the same. For exam-
ple, the first twelve lines in the main loop deal with initial-
izing the inflows. Notice a subtlety in the initialization of
the i- and j-inflows; they are actually performed within the
pipeline loop (kk). In other words, there is communication
in the inner loop of the computation. This has a profound
performance implication, yet the code looks nearly the same
as a very simple data parallel array operation. To fix this
problem, the kk loop should just be moved down below the
inflow initialization.

The wavefront computation in the ZPL version begins
with the i nt er | eave keyword. This forces the state-
ments within its scope to execute in an interleaved man-
ner by fusing the statements into the same scalarized loops.
The encompassed “prime at” references * @indicate to the
programmer and the compiler that the operations within the
statement block may require serialization of the computa-
tion. The compiler can and does implement pipelining as
described above, thus relieving the programmer from wor-
rying about the details of the implementation including the
tile size to use for pipelining. These special prime at refer-
ences explicitly indicate that those referenced values are de-
pendent on values computed in previous iterations, resulting
in serialization. Notice that in the Fortran version, indexing
withstanding, it is not at all clear which references cause the
serialization. Moreover, if these references were to change
such that no serialization were necessary, the programmer
should explicitly move the i- and j-inflow initialization out-
side the kk loop for fully parallel execution. Not doing so
would not necessarily result in an incorrect program, just an
inefficient one.

3.6. High-level languages stop programmers from
over-specifying code

Though the key advantage of a high-level language for
productivity is that it frees the programmer from the heavy
burden of writing low-level implementing code, there is a
further advantage: The compiler is freed from having to use
that implementation. That is, low-level code over-specifies

do mo = 1, mmo

<initialize K—inflows —— triply nested loop>
do kk = 1, kb ! outer planes loop (batches of mk—planes)
if (ew\-rcv .ne. 0) then ! I—inflows for block
<receive boundary values>
else
<initialize l—inflows —— triply nested loop>
endif

if (ns\-rcv .ne. 0) then ! J—inflows for block
<receive boundary values>
else
<initialize J—inflows —— triply nested loop>
endif
! JK—diagonals with MMI pipelined angles
do idiag 1, jt+nk—1+mi—1
do jkm 1, ndiag
do i i0, i1, i2 ! I-line recursion
ci mu(m)= hi (i)
dl (sigt(i,j,k) + ci + cj + ck)
dl 1.0 / dl
ql phi(i) + cixphiir +\
cjxphibj (i, 1k, mi) + \
ckxphikb (i,j,mi)
=gl * dl

phi (i)
phiir
phii (i)
phijb (i, 1k, mi)
phikb (i, j,mi)
end do ! i
phiib (j,lk,mi) = phiir
end do ! jkm
end do ! idiag
<compute and send outflows>
end do ! Kk
end do ! mo

2.0d+0«phi(i) — phiir
phiir

2.0d+0xphi (i) — phikb (i,j,mi)

(a)

louter angles loop (batches of mi angles)

2.0d+0xphi(i) — phijb(i,Ik,mi)

[R] begin
[lasti of R] phiib := 0.0; —— boundary i inflow
[lastj of R] phijb := 0.0; —— boundary j inflow
[lastk of R] phikb := 0.0; —— boundary k inflow
ci := mu *x hi;
cj := eta x hj;

ck := tsi * hk;

dl := 1.0/ (Sigt + ci + cj + ck);
interleave
ql := phi + cixphiib’ @lasti +
cjxphjb’ @lastj +
ckxphikb’ @lastk;
phi := gl = dl;
phiib := 2.0x phi — phiib’ @lasti;
phijb := 2.0« phi — phijb’ @lastj;
phikb := 2.0%phi — phikb’ @lastk;
end;

—— final i, j, and k outflows
[lasti in R] leakage[1+i3] += wmu x phiib = dj * dk;
[lastj in R] leakage[3+j3] += weta * phijb % di x dk;
[lastk in R] leakage[5+k3] += wtsi * phikb =« di = dj;
end;

(b)

Figure 5. Core computation of the ASCI SWEEP3D benchmark in (a) Fortran+MPI and (b) ZPL.

an implementation, possibly limiting the compiler’s ability
to optimize.

Many researchers have shown that message passing is
often the wrong choice for efficient communications (e.qg.,
[22, 16, 18]). Regardless, most parallel programs written in
low-level languages such as C or Fortran use message pass-
ing, partly due to the fact that a standard interface exists
(MPI) but also to the fact that it is easier to use than other
proposed interfaces. In fact, these other interfaces were pri-
marily designed as targets for libraries and compilers for
high-level languages rather than programmers.

The reason these alternative communication libraries
perform better than message passing libraries is that the
exposed interface more closely matches the implementing
hardware. For example, Striker et al. [22] showed that the
synchronization required of message passing limits perfor-
mance compared to one-sided communication on the T3D, a
machine that provided hardware support for one-sided com-
munication via the SHMEM library [2]. ARMCI [17] gen-
eralizes the low-level libraries of modern PC network inter-
face cards (such as Myrinet, Quadrics Elan, and Infiniband)
to provide efficient one-sided communication. ARMCI has
been shown to perform well on high-performance clus-
ters [18], a platform generally accepted as one for message
passing.

Like other high-level parallel languages, programmers
do not write interprocessor communication commands in
ZPL. Rather, the compiler determines where communica-
tion may be required and it inserts into the object code the
appropriate calls to the ZPL runtime library. The compiler
actually generates calls that describe the non-local data de-
pendences, not explicit communication calls. The calls in
this interface, called Ironman [6], describe four important
locations in the object code. Two are for the destination
(DR/DN), and the other two for the source side (SR/SV).

Destination Ready (DR). The locally cached copy of the
non-local data will not be read again (until DN). These
memory locations on the destination processor are now
ready to be overwritten with new values.

Source Ready (SR). The values needed on the destination
processor have just been written. The source processor
is ready to transmit the values.

Destination Needed (DN). The locally cached copy of the
non-local data will be read. The non-local data is
needed at the destination.

Source Volatile (SV). The values needed on the destina-
tion processor will be overwritten. The values are now
volatile and must be transmitted by this point.

These Ironman calls are bound to a specific communi-
cation library (MPI, SHMEM, etc.) at link-time. This late
binding enables the use of the most appropriate communica-
tion mechanisms for a given platform without changing the
user’s program itself. For example, for MPI, DR and DN
bind directly to MPI _I recv and MPI Wi t, and SR and
SV bind to MPI I send and MPI Wi t . For a put-based
implementation of a one-sided communication library such
as SHMEM or ARMCI, SR puts the data from source to
destination, DR and DN perform loosely-coupled synchro-
nization with SR, and SV is not needed.

When programmers write MPI message passing code di-
rectly, it is the semantics of message passing not the in-
dividual implementations of MPI that ultimately limit per-
formance. For example, data that is irregularly laid out in
memory, must be marshaled and brought together into a
contiguous message buffer before it can be sent. However,
some libraries (such as SHMEM and ARMCI) and PC net-
works interfaces (such as Dolphin SCI and Quadrics Elan)
expose via their native communication library remote di-
rect memory access (RDMA) to remote addresses. These
do not require the extra copy and memory overhead. An
implementation of MPI using these facilities has no control
over this data marshaling because the code to perform this
operation is embedded in the program itself. If a ZPL pro-
gram is to be run using MPI, then the ZPL libraries for MPI
would perform the marshaling; on a machine with efficient
RDMA, no marshaling would be performed.

By removing the burden of writing low-level implement-
ing code such as communication calls, the compiler is able
to better optimize communication using data dependence
information. Moreover, the late binding to the native com-
munication library allows for the most efficient communi-
cation library to be used without penalties incurred when
using a particular library.

3.7. High-level languages achieve high-performance

Performance is the bottom line of parallel programming.
The whole reason to parallelize a code is to make it run
faster. If the high-level language hurts either the sequen-
tial performance or the program’s ability to scale to higher
numbers of processors, then it loses its value.

Figure 6 shows the performance of the NAS CG and
FT benchmarks in ZPL and Fortran+MPI across three plat-
forms. These platforms are representative of the diversity
of machines. The T3E provides a top-of-the-line network
for low-latency interprocessor communication whereas the
cluster has much higher latency, but faster processors.

Note that the generality of the ZPL implementation is
apparent in the 176-processor run on the IBM SP. Here the
ZPL code can improve its performance further even though
the Fortran+MPI code was not written to run on a non-

power-of-two number of processors.

4. Limitations and Evolution

A very reasonable observation to make about ZPL is
that for all of its convenient features and abstractions, it
does not support arbitrary models of parallel programming.
While ZPL’s support for parallel computation using sparse
and dense multidimensional index sets supports a wide
variety of high-end applications, it lacks similar abstrac-
tions for other paradigms such as distributed hash tables,
graph-based data structures, and nested parallelism. Other
desirable features such as user-defined data distributions
and task parallelism are only now being added to the lan-
guage [10, 12].

Our explanation for this lack of generality is one of phi-
losophy. While many languages strive for complete gen-
erality from their inception, these languages tend to either
provide a very low level of abstraction, to never get all of
their features implemented, or to never achieve good perfor-
mance for more than a narrow range of features. In contrast,
our approach has been to start with those facilities we know
how to compile well and then add generality to the language
as our understanding and experience grow. As a result,
we have managed to achieve good performance through-
out ZPL’s lifetime while keeping the language’s concepts
elegant and interoperable.

The downside to this approach is that it has taken a long
time to acquire the knowledge. At times, ZPL’s evolution
has been slow and incremental. To reduce the effects of
this problem, we are currently in the process of produc-
ing an open source release of ZPL in hopes of engaging a
broader community in its support and development (previ-
ous releases have contained the compiler and runtime bina-
ries without their sources). A private release of the source
to colleagues at U. Mass-Lowell has already allowed ZPL
to be ported to the unusual Mercury-Race architecture [20].

We also anticipate that the open source release should
allow us to support a broader community of parallel pro-
grammers, since many potential users in the past have ex-
pressed their unwillingness to base their research on a lan-
guage whose implementation they could not access directly
(in part for fear that we would cease to support it in the fu-
ture). Meanwhile, our evolution of the language progresses
as does our enthusiasm for it, particularly as we look beyond
the NAS parallel benchmarks to consider more challenging
applications that push the limits of what we are currently
able to express cleanly and efficiently in ZPL.

5. Conclusions

There is a growing consensus that the bottleneck for
productivity in parallel computing lies with the low-level

CG Class C -- Cray T3E

CG Class C -- IBM SP2

CG Class C -- LinuxBIOS/BProc Cluster

Total Time Total Time Total Time
e "7 s 7 , 2567 -
g . g . % fg -
S = — —— linear speedup o s — —— linear speedup e 5= — — — - linear speedup P
§ t36-H —=— F+MPI g T18- —=— F+MPI £ 20924 —a— F+MPI -
g8 —e— ZPL (MPI) g9 —e— ZPL (MPI) e g R —e— ZPL (MPI) / e
e c s P
0 0 =
7824+ 7412 % 428 -
35 ~ = 3 S s
a g - ag a g =
58 z 58 35
3 z~ 30 3¢9
= L1124 2 6 ag 644 ~
3 @ S
28 S g3 a4
o o = ol s
5 5 g 2
0 T T T 1 0 U T 1 0 T T T 1
0 32 64 128 256 0 16 32 128 176 0 128 256 512 1024
(a) Processors (b) Processors (C) Processors
FT Class C -- Cray T3E FT Class C -- IBM SP2 FT Class C -- LinuxBIOS/BProc Cluster
Total Time Total Time Total Time
2 4 2 6.0 4 2 64 e
= = -7 = -7
s — — — - linear speedup g — — — - linear speedup 7 s = — — = linear speedup e
2% 34 —=— F+MPI 2345 —=— F+MPI 7 2348 —=— F+MPI -7
9 = —e— ZPL (MPI) S = —e— ZPL (MPI) e 9 —e— ZPL (MPI) 7
2 2 S
= e 2= o
=8 24 2 83.0 2832 .
0 c u c 0 c e
s s 20 s
= 8 [[e
g a o 3o -
°8 14 515 °816 -
=P - 25 o5 -
EX:y . £ ER -
s 1 ic = | #
o o7 a ,3
? 0 T T T 1 ? 00 U T 1 ? 0 T T T 1
0 32 64 128 256 0 16 32 128 176 0 128 256 512 1024
(d) Processors (e) Processors (f) Processors

Figure 6. Graphs showing the total speedups of class C of the NAS CG and FT benchmarks across
three platforms. The first column shows results on Yukon, a 272 processor Cray T3E with 260 user
processors. Each processor is a 450 MHz Alpha processor with 256 MB of memory. The second
column shows results on Icehawk, a 200 processor IBM SP with 176 user processors. The SP2 is
composed of 44 nodes with 2 GB of memory per node. Each node contains four 375 MHz power3
processors. The third column shows results on up to 1024 processors of Pink, a 2048 processor
cluster built with the LinuxBIOS/BProc technology. Pink is composed of 1024 nodes with 2 GB of
memory per node. Each node contains two 2.4 GHz Intel Xeon processors. These results are being
reprinted from a previous paper which can be consulted for more detailed information on the ZPL

implementations of these benchmarks [11].

programming models that users must rely on to express
their programs. In this paper, we explored the benefits
of languages that provide the programmer with a global
view of their computation rather than a local per-processor
view. In addition, we discussed why it is beneficial to al-
low programmers to reason about the implementation of
their codes. In ZPL, this is achieved by making all commu-
nication requirements visible in the source code, allowing
both the programmer and the compiler to reason effortlessly
about this bottleneck of parallel computing.

By supporting a global view of computation with com-
munication cues, ZPL provides programmers with a simpler
programming model which allows for rapid development,
evolution, and tuning. ZPL also makes the programmer’s
intentions clear to the compiler so that it can implement the
code efficiently using a variety of data structures and com-
munication protocols on any modern architecture.

6. Acknowledgments

During the time of this work, the second author was
employed by Los Alamos National Laboratory and funded
by the Mathematical Information and Computer Sciences
(MICS) program of the DOE Office of Science, and the
third author was supported by a DOE High Performance
Computer Science Graduate Fellowship (HPCSGF). Los
Alamos National Laboratory is operated by the University
of California for the National Nuclear Security Administra-
tion of the United States Department of Energy under con-
tract W-7405-ENG-36. This paper has been recorded under
LANL LAUR number LA-UR-03-9521.

The authors would like to thank the many who have con-
tributed to ZPL in the past, and thus made this work possi-
ble. This work was supported in part by grants of HPC re-
sources from the Arctic Region Supercomputing Center and

Los Alamos National Laboratory for which we are grateful.
Thanks are also due to the anonymous reviewers for their
helpful suggestions.

References

[1]

(2]
(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Bailey, T. Harris, W. Saphir, R. F. Van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel benchmarks 2.0.
Technical report, NASA Ames Research Center (NAS-95-
020), December 1995.

R. Barriuso and A. Knies. SHMEM user’s guide. Technical
report, Cray Research Inc., May 1994.

W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and lan-
guage specification. Technical Report CCS-TR-99-157,
Center for Computing Sciences, Bowie, MD, May 1999.

B. L. Chamberlain. The Design and Implementation of a
Region-Based Parallel Language. PhD thesis, University of
Washington, November 2001.

B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Sny-
der, and W. D. Weathershy. ZPL’s WYSIWY G performance
model. In Proceedings of the IEEE Workshop on High-
Level Parallel Programming Models and Supportive Envi-
ronments, 1998.

B. L. Chamberlain, S.-E. Choi, and L. Snyder. A compiler
abstraction for machine independent parallel communica-
tion generation. In Proceedings of the Workshop on Lan-
guages and Compilers for Parallel Computing, 1997.

B. L. Chamberlain, S. J. Deitz, and L. Snyder. A compar-
ative study of the NAS MG benchmark across parallel lan-
guages and architectures. In Proceedings of the ACM Con-
ference on Supercomputing, 2000.

B. L. Chamberlain and L. Snyder. Array language support
for parallel sparse computation. In Proceedings of the ACM
International Conference on Supercomputing, 2001.

R. Cytron. Doacross: Beyond vectorization for multiproces-
sors. In International Conference on Parallel Processing,
pages 836-844, 1986.

S. J. Deitz. Renewed hope for data parallelism: Uninte-
grated support for task parallelism in ZPL. Technical report,
University of Washington (2003-12-04), December 2003.

S. J. Deitz, B. L. Chamberlain, and L. Snyder. The design
and implementation of a parallel array operator for the arbi-
trary remapping of data. In Proceedings of the ACM Confer-
ence on Principles and Practice of Parallel Programming,
2003.

S. J. Deitz, B. L. Chamberlain, and L. Snyder. Abstrac-
tions for dynamic data distribution. In Proceedings of the
IEEE International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments, 2004.

G. Forman and B. Zhang. Distributed data clustering can
be efficient and exact. SIGKDD Explorations Newsletter,
2(2):34-38, 2000.

High Performance Fortran Forum. High Performance For-
tran Specification Version 1.1, November 1994.

E. C. Lewis and L. Snyder. Pipelining wavefront compu-
tations: Experiences and performance. In Fifth IEEE In-
ternational Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS), May 2000.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Lumetta, A. Mainwaring, and D. Culler. Multi-protocol
active messages on a cluster of SMP’s. In Supercomputing,
1997.

J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and com-
piler run-time systems. In Workshop on Runtime Systems for
Parallel Programming (RTSPP), April 1999.

J. Nieplocha, J. Ju, and E. Apra. One-sided communication
on the Myrinet-based SMP clusters using the GM message-
passing library. In CAC, 2001.

R. W. Numrich and J. K. Reid. Co-Array Fortran for par-
allel programming. Technical Report RAL-TR-1998-060,
Rutherford Appleton Laboratory, Oxon, UK, August 1998.
D. Rey, J. Stubblefield, and J. Canning. Porting the parallel
array programming language ZPL to an embedded multi-
computing system. In Proceedings of the 2002 conference
on APL, pages 168-175. ACM Press, 2002.

L. Snyder. Programming Guide to ZPL. MIT Press, Cam-
bridge, MA, USA, 1999.

T. Stricker, J. Stichnoth, D. O’Hallaron, S. Hinrichs, and
T. Gross. Decoupling synchronization and data transfer in
message passing systems of parallel computers. In Proceed-
ings of the ACM International Conference on Supercomput-
ing, 1995.

M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, Redwood City, CA, 1996.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance
Java dialect. In ACM 1998 Workshop on Java for High-
Performance Network Computing, 1998.

B. Zhang, M. Hsu, and G. Forman. Accurate recasting of
parameter estimation algorithms using sufficient statistics
for efficient parallel speed-up demonstrated for center-based
data clustering algorithms. In European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases,
2000.

