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ABSTRACT

Array programming languages such as Fortran 90, High Per-
formance Fortran and ZPL are well-suited to scientific com-
puting because they free the scientist from the responsibility
of managing burdensome low-level details that complicate
programming in languages like C and Fortran 77. However,
these burdensome details are critical to performance, thus
necessitating aggressive compilation techniques for their op-
timization. In this paper, we present a new compiler op-
timization called Array Subexpression Elimination (ASE)
that lets a programmer take advantage of the expressibility
afforded by array languages and achieve enviable portability
and performance. We design a set of micro-benchmarks that
model an important class of computations known as stencils
and we report on our implementation of this optimization
in the context of this micro-benchmark suite. Our results
include a 125% improvement on one of these benchmarks
and a 50% average speedup across the suite. Also we show
a speedup of 32% improvement on the ZPL port of the NAS
MG Parallel Benchmark and a 29% speedup over the hand-
optimized Fortran version. Further, the compilation time is
only negligibly affected.

1. INTRODUCTION

Array programming languages, such as Fortran 90 [2], High
Performance Fortran [16] and ZPL [20] have proven effec-
tive in letting a scientist express a computation in a clear
and concise manner. It has also been shown that aggres-
sive compilation techniques can bring the performance level
of programs written in array languages to acceptable levels.
This paper presents a compiler technique to improve per-
formance further. We demonstrate that this approach lets
a scientist achieve even more performance and portability
without sacrificing expressibility.

*The first author is supported by a DOE High Performance
Fellowship. The second author is supported by a scholarship
from the USENIX Association.

Specifically, this paper makes the following contributions:

e We introduce a new compiler optimization called Ar-
ray Suberpression Elimination (ASE) that is critical
to the performance of an important class of computa-
tions known as stencils. This optimization applies to a
limited but important class of codes: Perfectly nested
loops containing only straight-line code consisting of
sum-of-product expressions.’

o We present a new compiler abstraction called a Neigh-
borhood Tablet that serves as a simple framework for
implementing ASE and lets the compiler deal, in a
novel way, with the large number of subexpressions
that exist by associativity.

e We develop a set of benchmarks called the Stencil
Micro-Benchmarks: a collection of “Real World” sten-
cil kernels. This benchmark suite fills a void because
though there have been numerous papers written on
optimizing stencil codes, there is no standard set of
stencil kernels to compare approaches with. We com-
pare the effects of ASE and Scalar Replacement on this
benchmark suite.

Array Subexpression Elimination (ASE) is similar, though
orthogonal, to Loop Common Ezpression Elimination first
introduced by Ernst [12]. Both of these optimizations seek
to extend Common Subexpression Elimination [3] (CSE) be-
yond the boundaries of loops by finding expressions that are
redundantly computed in different iterations of the same
loop. CSE fails in this case not only because the subexpres-
sions are not common, but also because associativity makes
the number of such expressions potentially large and un-
wieldy. Ernst’s method relies on loop unrolling to eliminate
redundant computation only in expressions involving array
references that differ in a single dimension. Our method, on
the other hand, does not rely on loop unrolling and applies to
expressions involving multi-dimensional arrays. The actual
redundant expressions found by each of these optimizations
are necessarily distinct.

!Though we refer only to sum-of-product expressions,
throughout this paper, our methods and implementation
are sufficiently robust to deal with any expressions involving
only sums and products, including negatives and divisions.
Also our methods can apply to any operations forming a
commutative ring, e.g. logical “and” and “or”.



ASE subsumes a basic form of the well-studied optimization
known as Scalar Replacement [8, 9]. In Scalar Replacement,
array references are replaced by scalar variables. This is
either a source-to-source transform in scalar languages or
part of the scalarization process when array languages are
compiled. The goal behind this transform is to achieve a
better register allocation for array references in the face of
standard register allocation strategies such as coloring [10].

These optimizations are critical to the performance of an im-
portant class of computations known as stencil codes. Sten-
cil codes are commonly used in solving partial differential
equations, geometric modeling and image processing. For
the purpose of this paper, and in the tradition of others [7,
6, 19], we define a stencil code to be a stylized matrix com-
putation in which a group of neighboring data elements are
combined in the form of a sum of products to produce a
new value. We extend this definition to include arrays or
iteration spaces that are strided. Further we consider mul-
tiple source and destination arrays provided they occur in
the same loop.

As a basic example of how ASE applies to a stencil, con-
sider the canonical 2D 9-point isotropic stencil code. An
isotropic stencil is a stencil in which the weights are sym-
metric about the center element. Figure 1 illustrates two
approaches one can take to compute this stencil. The naive
approach involves traversing the array and, for each array
element, computing the full weighted sum of the element
and its eight neighbors. This naive approach is depicted
in Figure la. Scalar code for this computation under the
naive approach is show in Figure 2a. The problem with this
approach lies in the following observation: for any given
weighted sum in the array traversal except the first one in
each row, two partial sums from the previous iteration are
redundantly computed.

To overcome this problem, a programmer could write the
stencil taking the optimized approach. The optimized ap-
proach conceptually involves twice traversing each row of
the array. On the first sweep over each row, we store the
sum of the elements in the row above and below the current
row being iterated over. On the second sweep, we compute
the full weighted sum using the stored partial sums where
appropriate. These two conceptual sweeps are depicted in
Figures 1b and lc. In the actual implementation, the two
sweeps over the rows of the array can be combined in a single
sweep and the stored sums can be stored in scalar variables.
Optimized scalar code is shown in Figure 2b.

It is easy to verify that the optimization is responsible for
eliminating approximately two additions and four array ref-
erences per array element. Since we store the sums in scalar
variables, which are likely allocated to registers, only five
memory references must be made in each iteration of the
loop. In the naive case, we would make nine memory refer-
ences: one for each array reference in the stencil. The num-
ber of array references can be further decreased by applying
Scalar Replacement to the middle row. Another two mem-
ory references per array element can be eliminated assum-
ing, of course, that there are enough registers to meet the
demands of the optimizations. On the computation front,
we save the two additions by accessing three saved sums and

Benchmark Points Use

DBIGBIHARM X 25 Biharmonic operator
Diso3x3 1x9 Partial derivatives
Disobxb 1 x 25 Partial derivatives
DLILBIHARM 1 x 13 Biharmonic operator
DRESID(3D) 1x21 NAS MG Benchmark
Drow3x3 1x9 Partial derivatives
DrpPRI3(3D) 1x19 NAS MG Benchmark
IBIGLAPLACE 1 x 97 Gradient edge detection
ILINEDET 6 x 8 Line detection

IMORPH 1x 21 Mathematical morphology
INEVATIA 6 x 23.5" Gradient edge detection
INOISEL 1x9 Noise cleaning

INOISE2 1 x 25 Noise cleaning
INOISE3 1 x 49 Noise cleaning
IPREWITT 2 %6 Edge detection
IROBINSON 4x6 Gradient edge detection
IsOBEL 2x6 Edge detection
IWIDELINEDET | 8 X 9 Wide line detection
Iyoko1 4x3 Connectivity number
IZEROCROSS 10 x 21.1* | Edge detection

Table 1: Classification of the Stencil Micro-Benchmarks
showing the rank, type, size and use of the stencils. The
type is given by the first letter of the benchmark name:
“D” for floating point and “I” for integer codes. The
number of points, or neighboring array references, in a
stencil is in terms of the number of statements times
the number of points per statement’s stencil. *Since the
number of points is an average over the statements, this
number is not necessarily whole.

computing one saved sum per array element.

The rest of this paper is organized as follows. In the next
section, we motivate this optimization by introducing the
Stencil Micro-Benchmark Suite and discussing in detail the
optimization of three stencils in this suite. In Section 3, we
define the Neighborhood Tablet and, in Section 4, discuss
how it enables ASE. In Section 5, we present experimental
results. Lastly, in Section 6, we discuss related work and
conclude.

2. MOTIVATION

To further motivate the need for ASE, we introduce a bench-
mark suite of “real world” stencil kernels. This suite is avail-
able from the Authors. Stencil codes continue to play an im-
portant role in scientific computations as well as the fields
of image processing and geometric modeling. We have col-
lected twenty kernels that span the gamut of shapes, sizes
and uses. These kernels are listed in Table 1. The 2D stencil
kernels are run over a 1000 by 1000 array of floating point
or integer values; the 3D stencil kernels over a 100 by 100
array.

The stencils were taken from three sources. All the integer
stencils can be found in a book on image processing [15].
The floating point stencils come from the domain of partial
differential equations [1] and the NAS MG Parallel Bench-
mark [4, 5].

Without optimizing these kernels for reuse, the number of



a) Naive approach’s single sweep

b) Optimized approach’s first sweep

c) Optimized approach’s second sweep
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Figure 1: An illustration of two ways to compute the 2D 9-point isotropic stencil: (a) Three consecutive iterations

of the computation in the innermost loop. Note the significant overlap of array references and computation.

(b)

Three consecutive iterations of the pre-computation (the first of two sweeps). (c) Three consecutive iterations of the
optimized computation (the second sweep) using the values computed in the first sweep.

fori:=1tondo
forj:=1tondo

wa*(8[i-1,j]+S[i+1,j]+S[i,j-1]+S[i,j+1]) +

w3*S[i,]

(a)

fori:=1tondo
V1 := S[i-1,0] + S[i+1,0]
V2 := S[i-1,1] + S[i+1,1]
for j:=1tondo
V3 := S[i-1,j4+1] + S[i+1,j+1]
D[i,j] == w1*(V1+V3) +

ws*s[la.]]
V1:=V2
V2:=V3

(b)

Figure 2: Unoptimized and optimized code to compute the 2D 9-point isotropic stencil

additions necessary is one less than the total number of
points involved in the stencil. The number of multiplica-
tions is at least equal to the number of distinct weights (less
any that can be eliminated by strength reduction). In our
experiments, we always factor the multiplications as much
as possible for both the optimized and unoptimized case. In
Section 5, we report on how many additions and multiplica-
tions we are able to eliminate with this optimization.

Before delving into the details of our optimization, it is
worth discussing three more examples. Figure 3 illustrates
these three examples: INOISE1l, INOISE2, and 1YOKOI. The
INOISE] stencil is similar to the 2D 9-point isotropic sten-
cil but contains only two weights. In addition, the value
of these weights is important; in the previous example, it
was enough to know the weights were equal. In the naive
approach, we make one sweep over the array and for each
element, compute the weighted sum given by the stencil.
In this case, the computation involves doubling the element
currently iterated over and adding to that product the sum
of the elements in the eight neighboring positions.

The optimized approach, illustrated in Figure 3a, involves
three conceptual sweeps over the rows of the array. In the
first sweep, we store the sum of the elements in the row above
and below the row being iterated over. This is as in the first
sweep from the introductory example. In the second sweep,
we store the sum of the element in the row being iterated
over and the stored sum from the first sweep. Finally, in the
third conceptual sweep, we compute the weighted sum using
the stored sums where appropriate. The second sweep allows
us to eliminate one more addition per array element. Thus,
instead of eight additions in the naive case and six additions
without the second sweep, we compute the weighted sum
with only five additions per array element.

The INOISE2 stencil example differs from the previous two
examples in that we are able to eliminate a multiplication.
This type of stencil is common in the image processing do-
main. It is referred to as separable because we can separate
the weights into a set of vertical weights and a set of hori-
zontal weights. In this case, those sets are identical.

The optimized approach involves two conceptual sweeps over
the array. In the first sweep, we store the weighted sum of
five elements of a given column of the array: the element in
the row we are iterating over, the two elements above and
below this row, and the two elements above and below those.
We use the vertical weights to compute this weighted sum.
In the second sweep, we use the horizontal weights to com-
pute the weighted sum of the stored sums. The optimiza-
tion impact includes the elimination of sixteen additions,
one multiplication and twenty array references.

Our next example involves a multi-statement stencil. A
multi-statement stencil is a stencil computation in which
multiple stencils are computed in the same loop and over
the same index space. We distinguish this from a multisten-
cil which is a conceptualization of multiple instances of a
stencil over a single dimension [7, 6]. The IYOKOI stencil
is a multi-statement stencil consisting of exactly four sten-
cils, each a ninety degree rotation of the other. If each of
these four stencils were computed separately, then we could
not save any additions between two subsequent iterations.
By optimizing between the stencils, we can eliminate two
additions. In the first two conceptual sweeps of the array,
we calculate two sums: one between the element in the row
being iterated over and the element above it and the other
between the element in the row being iterated over and the
element below it. In the final four conceptual sweeps, we
compute the weighted sums given by the four stencils and
store the results in the destination arrays.



a) Optimizing the inoisel stencil benchmark
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Figure 3: Motivating examples

3. TABLET CONSTRUCTION

In this section, we describe an array statement normal form
and show how to translate Fortran 90 array statements into
it. From this form, we show how to construct a neighbor-
hood tablet which will form the basis of our optimization.

3.1 Normalized array statement sequences

Based on the definition of normalized array statements first
introduced by Lewis et al.[17], we define a normalized array
statement sequence to be a sequence of element-wise array
operations that has the following properties: (i) the same
array (or aliasing arrays) may not be both read and writ-
ten, (ii) the statements contain only arrays of a common
rank, (iii) the extent of the array statements’ computation
is defined by an index set, called a region, and all array ref-
erences are specified as constant offsets from this index set,
and (iv) the array statements are fused into a single loop. A
normalized array statement sequence has the following form.

[R] f1(A1Qd1,A2Q@ds,...,A;; @Qd;, )
F2(Agy +1Qds, 41,A4, +2Qd;, 42,...,A4,Qd;,)

fm(Aip,_141Qdi, 41,4, 42Q@d;,,_ 42,..,A4,Qd;,,,)

The indices of array A; involved in the computation are
those of the region R=[1..ny,1..ny,...,1..n,] offset by the in-
teger r-tuple d;=(d;,,d;,,...,d;j,). As an example, consider
the following F90 array statements.

DO(1:m,1:n) = S1(0:m-1,2:n4+1)+S1(2:m+1,1:n)+S2(1:m,2:n+1)
D1(1:m,1:n) = S1(2:m+1,0:n-1)+S1(0:m-1,2:n+1)+
S1(0:m-1,1:n)+S1(2:m+1,1:n)+S2(1:m,1:n)

These statements form a single normalized array statement
sequence that is written as follows.

[1..m,1..n] DO = $1@(-1,1)+S1@(1,0)+S2@(0,1)
D1 = $1@(-1,0)+S1@(-1,1)4+51@(1,-1)+
S1@(1,0)+52Q(0,0)



Though only normalized array statement sequences are used
for the construction of the Neighborhood Tablet, unnormal-
ized sequences do not prevent independent sequences from
being optimized. This particular statement representation
is appropriate for reasons discussed in the literature [17].

3.2 Generalized Tablet

The Neighborhood Tablet stores all the information we need
to perform optimizations such as ASE and Scalar Replace-
ment. The basic idea behind the tablet is to store temporal
information about a pair of references to the same array as
spatial information. For example, we know that the array
reference given by S1@(1,0) refers to the same array loca-
tion as 51@(1,-1) in the next iteration of the loop. Thus
in the tablet, these two array references would map next to
one another.

To construct a Neighborhood Tablet from a normalized ar-
ray statement sequence we must fix the dimension traversed
by the innermost loop as well as the direction of the traver-
sal. We do not wish to store array references and expressions
in scalars if they are not going to be reused in a small num-
ber of subsequent iterations so the only dimension that is
important is the innermost one. Note that instead of fixing
the dimension and direction, we can construct all combi-
nations of possible Neighborhood Tablets based on all the
possible combinations of innermost dimensions and traversal
directions. There are 2r such combinations where r is the
rank of the array. Typically, though, there are other more
important constraints that dictate the traversal configura-
tion such as the need to be cache friendly. Further, in the
common case, we have found that if redundant computation
is present, the stencil is symmetric.

The Neighborhood Tablet is a 2D array of nodes. In each
node of the tablet, we store three entities: an array reference,
the statement that the array reference occurs within, and
a weight given by the function wfunc that takes the array
reference as its argument. We refer to these entities with the
following functions respectively, each of which take a node
as an argument: arr, stm, and wgt. We define the functions
row and col to return the row and column of a node in the
tablet. These functions will be especially useful in the next
section.

Array references that access the same location in memory at
some point in the innermost loop are stored in the same row
of the tablet. Given two array references that are next to
one another in the same row, the one on the left will access
the memory location of the one on the right in a subsequent
iteration of the loop, assuming these array references are in
the same statement.

To describe the construction of a general tablet, we pro-
vide formulas for determining the width and height of the
tablet as well as for determining where each array reference
is mapped. The tablet is constructed by mapping each valid
array reference to a node in the tablet and storing it, the
statement it occurred in, and the weight given by wfunc. An
array reference is valid if the function vfunc determines so.
The functions wfunc and yfunc depend on the optimization,
whether ASE or Scalar Replacement, and will be defined
shortly.

Let k be the dimension of the innermost loop and suppose
without loss of generality that it is traversed in the upward
direction. We define two functions span(k) and span(k) for
a given normalized array statement sequence as follows:

span(k) = [.max (d3) — min (d,)+1

j=1..im =1 im
and
,
span(k) = 3212,;#]. max (d;,) — min (dj,)+1

These functions compute the span of the offsets in the kth
dimension and all but the kth dimension respectively. If
there is only one statement and one distinct array in the se-
quence, then the width of the Neighborhood Tablet is given
by span(k) and the height by span(k). To account for the
possibility of more than one distinct array, we multiply the
height by the number of distinct arrays which we call w.
Since two array references to two distinct arrays will never
refer to the same memory location, we restrict these to sep-
arate rows.

We also must allow for multiple statements in the same loop.
Different array references to the same array can occur in dif-
ferent statements and can refer to the same memory location
even in the same iteration. For this reason, we keep these
array references in the same row. So we expand the width
of the Neighborhood Tablet by the number of statements
yielding m x span(k). In addition, the value returned by
span(k) is rounded up so that it is divisible by the stride or
step that the innermost dimension is traversed by. For our
example sequence in Section 3.1, there are six rows and six
columns since there are two statements, two distinct arrays,
and the offsets in each dimension span from —1 to 1.

The functions that map valid array references to nodes in
the tablet are as expected. We put all array references in
the same statement together in a block of columns and all
array references of the same array together in a block of
rows. We uniquely number the arrays from one through w
and the statements from one through m. Then the row and
column of a given array reference is found by the following
two functions respectively:

fr= 3 di+(a—1)span(h)

t=1,t#k
and
fe =di + (s — 1)span(k).

The Neighborhood Tablet for our example sequence from
Section 3.1 is illustrated in Figure 4.

Because the Neighborhood Tablet contains a large amount
of spatial information, e.g. how many iterations until two
array references in the same row refer to the same mem-
ory location, a large portion of the array is possibly empty.
We have found that a sparse implementation of the Neigh-
borhood Tablet as well as the subtablets (which are built
during the optimizations) are necessary to limit the time
spent optimizing code.



S10(-1, 1) S1@(-1, 0)|s1@(-1, 1)

s1eC 1, 0) s1e( 1,-1)|s1e( 1, 0)

$20( 0, 1) $20( 0, 0)

Figure 4: An example Neighborhood Tablet.

4. ASE

In this section we discuss how the Neighborhood Tablet is
used as a tool to automate array subexpression elimination.
We introduce the concept of a subtablet which corresponds
to a redundant array subexpression if the redundancy con-
ditions are satisfied. We show how to generate optimized
code once a set of subtablets is found. Finally, we offer a
heuristic to find a desirable set of subtablets.

First, though, we define the weight and valid functions for
constructing ASE’s Neighborhood Tablet. The valid func-
tion is defined as follows. An array reference can be included
in the neighborhood tablet if there is a weight (possibly the
unit weight) such that the statement can be rewritten as the
sum of a computation and the product of the array refer-
ence and its weight. Further, the weight must be invariant
to the innermost loop and the array must not be assigned
in the loop. The weight function returns the weight as just
described in the definition of vfunc.

4.1 Subtablets and redundancy conditions

The naive approach to writing a stencil computation in-
volves computing the full weighted sum of any given sub-
tablet. However, if the redundancy conditions are satisfied,
this is potentially suboptimal. We define a subtablet to
be a set of nodes in the Neighborhood Tablet. Then if a
subtablet satisfies the redundancy conditions, its columns
represent redundantly computed sums. The optimized way
of computing the portion of the weighted sum given by the
subtablet is to sum up only one of the columns per array
element and reuse sums for the other columns. The redun-
dancy conditions are listed in Figure 5 using the functions
from the previous section. In addition, str(T) is the stride
or step by which the innermost dimension is traversed.

The first redundancy condition ensures that the weighted
sum of products can be factored in the way the subtablet
requires it to be. The first part lets us multiply the weight by
the stored sums. The second part lets us multiply the weight
to compute the stored sums. The third part lets us do both.
For the 2D isotropic stencil described in the introduction,
it is the first part of this condition that applies. For the
INOISE2 stencil, it is the third part. It can be argued that
only the third part is necessary because if either of the first
two parts are true, then so is the third. However, we write
it this way so as to explain later how we find subtablets
of different types. Also, equality is possible to determine
between runtime constants at compile time, but a ration
between runtime constants is indeterminable.

Redundancy Conditions. A subtablet s with width w
and height h of Neighborhood Tablet T consisting of nodes
S1,15 .03 Sw,1y 81,2y s Sw,h 48 said to satisfy the redundancy
conditions if each of the following hold:
(1) (i) Vair<o<wVya<y<nwgt(ss,1) = wgt(se,y) or
(i) Vari<e<wVyacy<nwgt(siy) = wgt(ss,y) or
wgt(s1,1)  wgt(ss,1)
V H V B =
() Voo Wa<ushy io1,) ™ wgt(oa.)
(2) Vau<e<wVyacy<nrow(siy) = row(ss,y)

(3) Vai<e<wVyac<y<n
col(s1,1) — col(sz,1) = col(s1,y) — col(Sz,y)
(4) Vai<e<wVya<y<nstm(ssi) = stm(se,y)
(5) Vaii<ae<wVyii<y<ncol(siy) = col(sg,y) mod str(T).

Figure 5: Redundancy Conditions for ASE

The second and third conditions ensure that the redundantly
accessed memory is redundant. Condition two forces the
rows of the subtablet to align to the rows of the Neigh-
borhood Tablet. The row in the Neighborhood Tablet by
definition consists of redundantly accessed memory loca-
tions. Condition three ensures that these redundantly ac-
cessed memory locations occur on the same iterations in
every row. We can only eliminate the redundant sum if the
sum happens in the same iteration.

Conditions four and five are relevant only to certain types
of stencils. Condition four pertains only to multi-statement
stencils. It is necessary to ensure that the sum is computed
in the same statement. Condition five pertains only if we
are traversing over the array with a stride greater than one.
Here we do not want to mistakenly identify a sum as redun-
dant if it is skipped in a subsequent iteration because the
stride is too large.

4.2 Heuristic approach
4.2.1 Growing subtablets

Because larger subtablets correspond to larger amounts of
redundancy, we take the greedy approach of searching over
only maximal subtablets. A subtablet is maximal if it can
be made neither wider nor higher. Depending on the exact
formula we use to determine the benefit of a subtablet, it is
possible that the best solution does not contain any maximal
subtablets. Since the number of subtablets is exponential
(even the number of maximal subtablets is exponential) and
we let the benefit of a given subtablet be configurable, we
are forced to use a heuristic so that the optimization runs
in a reasonable amount of time.

Our algorithm to find a set of subtablets starts by finding a
candidate set of maximal subtablets. We then choose from
this candidate set the subtablet with the greatest benefit,
as defined by a configurable benefit function, and recurse
on whatever is left in the Neighborhood Tablet minus those
nodes in the chosen subtablet. In addition, we insert a new
row in the neighborhood tablet corresponding to the sub-
tablet just removed. We call this step reinsertion since we
reinsert some pseudo array references that relate to the sub-
tablet just removed. This step lets us optimize stencils like



the INOISEL stencil illustrated in Figure 3a. The algorithm
for identifying the candidate set is shown in Figure 6.
INPUT T : a Neighborhood Tablet

OutrPuT Candidates : a set of subtablets

1 Candidates = ¢

2 foreach part ¢ of redundancy condition 1
3 Candidates; = ¢

4 foreach 2 x 2 subtablet s in T

5 if s ¢ s’ forall s’ € Candidates;

6 widen s

7 heighten s

8 Candidates; = Candidates; U {s}
9 Candidates = Candidates U Candidates;
10 return Candidates

Figure 6: Algorithm to find the candidate set of sub-
tablets for ASE

In this algorithm, we start with all possible subtablets of
height two and width two. We first expand these subtablets
horizontally and then vertically using functions in lines 6
and 7 that are easy to reason about. We add each expanded
subtablet to the candidate set. To save computation time,
we avoid expanding subtablets that are contained in a max-
imal subtablet already in the candidate set.

This algorithm is appropriate because it is fast and yet still
finds a large set of interesting subtablets. It effectively
prunes out the two by two subtablets that would lead to
the same maximal subtablet. In addition, the use of each of
the three parts of redundancy condition 1 separately help us
avoid an overwhelming number of the separable subtablets
in case the number of multiplications is a big concern. Those
subtablets that satisfy the first part of the first redundancy
condition do not affect the number of multiplications. Those
that satisfy the second part can possibly increase the num-
ber of multiplications and those that satisfy the third part
can increase or decrease the number of multiplications.

4.2.2 Benefit function

To decide which of the candidate subtablets is chosen to op-
timize the code, we use a benefit function that returns higher
numbers for potentially better subtablets. The benefit of a
subtablet is given by the following formula

B1 x (number of adds eliminated) +

B2 x (number of multiplications eliminated) +
B3 x (number of array references eliminated) +
B4 x (number of scalar variables used)

The number of adds eliminated is easy to calculate. In the
naive weighted sum approach we compute wh — 1 additions.
In the optimized approach we compute h—1 additions to pre-
sum the columns and then w—1 additions to add the column
sums which leads to a total of h—1+w—1 additions. So the
total number of additions eliminated is given by (w—1)(h—
1). The number of array references eliminated is similarly
calculated to be (w — 1)h.

We eliminate or add multiplications based on the weights.
In the naive case, the number of multiplications is given
by the number of distinct weights not counting one or its
negative. The number in the optimized case is given by the
sum of the distinct number of multiplications in each pass.

The number of variables used is important because it cor-
responds to the number of registers needed to eliminate the
array references. It is easy to determine from a given sub-
tablet and is equal to span(k) where k is the innermost
dimension, span is as previously defined, and we consider
only nodes in one row of the subtablet.

The variables Bl through B4 configure tradeoffs between
multiplications, additions, array references and additional
variables. We use separate configurations for floating point
and integer codes since the number of floating point registers
often differs from the number of integer registers and the
latency of floating point operations is typically higher than
integer operations. Note that B4 should be negative while
the others are positive. Since these numbers are machine
dependent, we do not give values for them here. In future
work, we plan to look at a method for determining these
values automatically possibly with a test suite of stencils.

4.2.3 Benefit thresholds

The number of subtablets can adversely affect the perfor-
mance. By using more variables and requiring more regis-
ters, it could be the case that ASE is detrimental. In our
implementation of the optimization in the ZPL compiler, we
produce C code. For this reason, we do not have access to
the register allocater. So how do we know if adding another
small subtablet will cause the creation of some spill code
that will slow the program down? We experimented with a
number of heuristics to cope with this problem and found a
simple approach to suffice.

Counting the number of variables inserted into the code and
not adding any more subtablets after a given limit has been
reached proved ineffectual. No single limit seemed to suffice.
A spill might be appropriate if the number of eliminated
additions is large enough. Modifying this scheme by making
the limit flexible (e.g. increasing the necessary benefit to
add the subtablet once some limit of variables is reached)
also failed. It is difficult to ascertain the number of registers
needed to implement the rest of the loop efficiently. This is
machine/compiler dependent.

We found that, though not perfect, simply requiring the ben-
efit of every subtablet to be above a threshold was adequate,
although not perfect: In certain cases we could occasionally
do better if we were to have a lower threshold or none at
all. This assured that the optimized code was never slower
than the naive code; this case occurred if we added extra
scalar variables without eliminating a large enough number
of additions and array references.

4.2.4 Example subtablets

As an example, let us continue to optimize the Fortran 90
statements from Section 3.1. There are two candidate sub-
tablets in the Neighborhood Tablet from Figure 4. These
are illustrated in Figures 7a and 7b.
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Figure 7: Two candidate subtablets

The subtablet in Figure 7a has a height of two and a width of
three. The number of array references eliminated is four; the
number of additions eliminated is two; and the number of
scalar variables used to generate the code is three. There are
no multiplications in this example. For the other candidate
subtablet, we would eliminate two additions and three array
references, but use only two variables. Depending on the
values of B1 through B4, the benefit function would let the
compiler decide which to use.

Assume for this example that the subtablet in Figure 7a is
used to optimize the statements. Then we insert a new row
into the Neighborhood Tablet based on this subtablet and
remove the nodes contained in the subtablet. The Neigh-
borhood Tablet, after reinsertion, is depicted in Figure 8.

s2@ 0, 1) s2@ 0, 0)

SUBTAB1 SUBTAB1 SUBTAB1

Figure 8: The example Neighborhood Tablet after Rein-
sertion.

From this new Neighborhood Tablet, we are able to find one
candidate subtablet consisting of the two remaining array
references and the first two scalar variables used by our first
subtablet and depicted by the two leftmost SUBTAB1 nodes in
the bottom row of the Tablet. Thus, we eliminate one more
addition and array reference. Had we chosen the subtablet
of height three rather than width three initially we would not
be able to eliminate this extra addition. We would have only
eliminated two. For this reason, we give a higher absolute
value to B3 than B4 so as to favor wider subtablets.

4.3 Scalarization and code generation

After finding the subtablets, we must optimize the actual
code. For array languages, this means scalarizing the code.
In the case of the ZPL compiler, we produce optimized C
code. For scalar languages, it means completing a source-
level transform. For the purpose of simplifying this expo-
sition, we show a Pascal-like syntax where indenting corre-
sponds to begin-end blocks rather than the actual C code
produced by our compiler.

There are three basic approaches to generating this opti-
mized code: scalar, unroll and wvector. The unoptimized
version of our running example is below.

fori:=1tondo
for j := 1 ton do
DO[i,j] := S1[i-1,j4+1]4+S1[i+1,j]+S2[i,j+1]
D1[i,j] := S1[i-1,j]4+S1[i-1,j+1]+S1[i+1,j-1]+S1[i+1,j]+S2

‘We show the scalar, unroll, and vector versions of the code
in Figure 9. The scalar approach involves computing the
partial sums as we traverse the array. In the case of our ex-
ample, we have two subtablets corresponding to two partial
sums. We store the partial sums in scalar variables that we
shift. Since the span of each of these subtablets measures
two, we need only two scalar variables for each subtablet.
The use of the first subtablet in the second (reinsertion), is
seen below in that the scalar variables for the second sub-
tablet, V2_1 and V2_2, are computed from the scalar variables
for the first subtablet.

The scalar variables are shifted at the bottom of the inner-
most loop so that the sums are kept current. The clever
reader will notice that the shifting of the first subtablet is
unnecessary since its earlier references are not used; they
have been subsumed by the second subtablet. In our imple-
mentation, we leave the elimination of this statement to the
C compiler and dead assignment elimination.

Though there is only one necessary shift of scalar variables in
our example, often there are more. In the unroll approach,
we avoid shifting the scalars by unrolling the loop. Each
instance of the computation in the unrolled loop refers to
different scalars as the meanings of these scalars shift. In
addition to the code in Figure 9, a loop similar to the scalar
version must be used on the last few iterations since the size
of n is not necessarily a multiple of the unrolling factor, the
maximum of the bounding widths of the subtablets. In this
case, it is two.

The vector approach to generating code is closest to the
way we thought about optimizing this stencil with the two
conceptual sweeps over the array. In the first sweep, we do
any partial computations which in our example involves the
two precomputed sums. In the second sweep, we use the
vector of precomputed sums to compute the full weighted
sum.

If we are generating the vector version of the code, we must
change the benefit function. By finding subtablets, we would
no longer eliminate array references. Instead, we would in-
crease the number of array references. We also would ignore
the number of variables and count instead one vector per
subtablet.

4.4 Scalar Replacement

As stated earlier, Scalar Replacement is an optimization
in which array references are replaced by scalar variables
to achieve a potentially better allocation of registers and
eliminate redundant array references. To modify the Neigh-
borhood Tablet so that it is suited to Scalar Replacement,



fori:=1ton do
V1.1 := S1[i-1,1]4+S1[i4+1,0]
V2.1 := V1_1+82[i,1]
for j :=1tondo
V1.2 := S1[i-1,j+1]+S1[i+1,j]
V2.2 := V1_2+8S2[i,j+1]

fori:=1ton do
V1.1 := S1[i-1,1]4+S1[i4+1,0]
V2.1 := V1_1482[i,1]
for j:=1ton by 2 do
V1.2 := S1[i-1,j+1]+S1[i+1,]]
V2.2 := V1_2+48S2[i,j+1]

fori:=1tondo
for j := 0 to n+1 do
V1[j] := S1[i-1,j]4+S1[i4+1,j-1]
Vil == VI[jl+820i,]
for j:= 1 ton do
DO[i,j] := V2[j+1]
D1[i] := Vi[j+1]+V2[j]

D1[i,j] := V1.24+V2.1
V11 := S1[i-1,j4+2]+S1[i+1,j+1]
V2.1 := V1.2452[i,j+2]

DI1[i,j] := V1.14V2.2

DO[i,j] := V2.2 DO[i,j] := V2.2
D1[i,j] := V1_24V2.1
V11 := V12
V2.1 := V2.2
DO[i,j] := V2.1
(a)

(b)

(c)

Figure 9: Three versions of ASE optimized code for our running example: (a) scalar, (b) unroll, and (c) vector.

we need simply change the weight and valid functions. For
Scalar Replacement, these functions become trivial. There
is no weight associated with any array reference, so this func-
tion is ignored. The valid function always returns true; all
array references are valid for Scalar Replacement.

The subtablets are defined to be any set of tablet nodes such
that each node is in the same row of the tablet. This is the
second redundancy condition for ASE. For space reasons, we
leave out of this discussion how to find a good set of such
subtablets. It is a trivial exercise for the interested reader
to come up with a reasonable heuristic.

One caveat of implementing this optimization pertains to
those array references for which the array is assigned a value
in the loop. Recall that we consider such array references
invalid for ASE. For Scalar Replacement to be correct, we
must be sure to assign values not only to this array, but
also to any scalars which we generate to replace this array’s
references.

We have found that it is wise to combine Scalar Replace-
ment and ASE when generating scalar or unrolled code for
ASE. We use the more restrictive weight and valid functions
of ASE for this purpose and compare the subtablets under
the same benefit function described earlier. The subtablets
for Scalar Replacement gain no points for eliminating ad-
ditions and multiplications, but do gain and lose points for
using variables and eliminating array references respectively.
We continue with a second pass over Scalar Replacement to
possibly optimize any array references not valid for ASE.

45 A Further Extension

Consider the classic Jacobi stencil as given below.

D(1:m,1:n) = (S(0:m-1,1:n)+S(1:m,0:n-1)
S(2:m+1,1:n)4+S(1:m,2:n+1))/4

At first glance, there is no computation to eliminate in the
inner loop. But we can eliminate one addition if we compute
two rows simultaneously. The framework we have developed
is easy to extend to do just this. The resulting Neighbor-
hood Tablet is shown in Figure 10. The key idea is to treat
the stencil as two. Except for a small change to the code

generation procedure to allow the outer loop to increment
by two, no other modifications need to be made.

se(-1, 0)

$e( 0,-1) seC 0, 1 se(-1, 0)

seC 1, 0) se( 0,-1) seC 0, 1

seC 1, 0)

Figure 10: The Neighborhood Tablet for simultaneously
computing two rows of the Jacobi stencil.

5. EXPERIMENTAL EVALUATION

In this section we evaluate our implementation of the Neigh-
borhood Tablet in the ZPL Compiler. We focus on the NAS
MG Parallel Benchmark and the Stencil Micro-Benchmark
Suite. We compare ASE against scalar replacement as it
pertains to the stencil benchmarks

5.1 NAS MG Benchmark

A performance study of the NAS MG Benchmark across a
number of high-level array languages and parallel platforms
is already reported in the literature [11]. The optimiza-
tions discussed in this paper proved crucial to the perfor-
mance/expressibility ratio of the ZPL version of this bench-
mark. If the compiler does not support this optimization, it
is necessary to hand-code it to achieve comparable perfor-
mance. Hand-coding is an error prone task and results in
code that is more difficult to maintain and less portable.

The NAS MG Parallel Benchmark involves a number of sten-
cils where the weights are known at compile-time. It is thus
a good match for ASE. In four important routines, stencils
account for much of the time. Two of these stencils, those
from the residual and projection routines, are also in the
Stencil Micro-Benchmarks as RESID and RPRJ3 respectively.

Figure 11 shows the results of applying ASE to the NAS
MG Benchmark. The machine used for this experiment is
a 500MHz Pentium P-IIT with 0.938 GB of RAM. For the
Fortran codes, we used the GNU g77 compiler version 0.5.25
with the -O3 flag. For the C compiler serving as the back-



end of the ZPL compiler, we used the GNU gcc compiler
version 2.95.2 with the -O3 flag.

Optimization Effect on NAS MG Benchmark
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Figure 11: Optimization impact on the NAS MG

Benchmark on a 500 MHz Pentium P-III

The Fortran version is the official version of the benchmark
and is written in a mix of Fortran 90 and Fortran 77. The
stencils are written in Fortran 77 so that they can be hand-
optimized. Figure 11 shows the speedup resulting from this
optimization over all but the largest problem class size. This
largest size could not run on a single processor.

We normalize to the Fortran version of the benchmark with-
out the hand-coded optimization. We removed the optimiza-
tion from the official version and replaced it with a naive
implementation of the stencil. The hand-coded optimiza-
tion in the Fortran version achieves roughly a twenty percent
speedup on all the problem sizes. The hand-coded optimiza-
tion is similar to the vector version of the code produced by
the ZPL compiler. The authors of the NAS MG Benchmark
decided not to optimize for scalar machines because that
would devastate the performance on vector processors. So
to achieve portability, the benchmark was optimized for a
vector processor with the hope that this optimization would
then also benefit scalar processors.

The ZPL unoptimized version takes slightly more time than
the Fortran optimized version on average. The ZPL compiler
produces highly optimized C code that is further optimized
by the underlying C compiler. When the ZPL compiler op-
timizes the code using either the unroll or scalar version of
code generation, performance improves by up to 32%.

On a parallel supercomputer, we see less of an impact. We
compare the ZPL optimized and unoptimized versions on
a 256 node CRAY T3E where each node is an Alpha with
0.256 GB RAM running at 450 MHz. The back-end C com-
piler is the CRAY cc compiler and we used the -O3 flag on
both our unoptimized and optimized codes, as always. Fig-
ure 12 shows the results on both the B and C classes of the
benchmark. The class A results are similar to the class B
results and are omitted.

As more processors are thrown at the problem, without vary-
ing the problem size, the optimization becomes less signif-
icant. The speedup of the optimized version is less than
the speedup of the unoptimized version. It is easy to paral-
lelize unnecessary work. Shown in the graph, however, is the
speedup of both versions normalized to the fastest running
time of either version on the smallest number of processors

for which we have timings. In all cases, the optimized version
is faster. The percentage faster remains relatively constant
on the largest problem size, decreasing from 19.5% to 16.3%
between 16 processors and 216 processors.

5.2 Stencil Micro-Benchmarks

The stencil micro-benchmarks give us a better look at the
optimization as it directly affects stencils. Our optimization
as implemented in the ZPL compiler is able to eliminate
a large number of additions, multiplications and array ref-
erences from the naive stencil codes. These numbers are
reported in Table 5.2 along with the number of scalar vari-
ables used to do so. We prepend the letter “D” or “I” to the
benchmark to signify that it is either a floating point code
or an integer code respectively. Also reported are the num-
ber of array references eliminated solely by Scalar Replace-
ment, abbreviated in the table by “SR”, and the number of
scalar variables used to do so. We implemented the scalar
replacement optimization by turning off the stencil part of
ASE, i.e., by only finding subtablets of height one. Since the
stencil kernels are simple loops without conditional control
flow in the inner-loop, a more complicated form of scalar
replacement is unnecessary. There are no missed opportuni-
ties. As noted in the literature [9], it is easy to overoptimize
with Scalar Replacement. To ensure that we are comparing
against a good version of scalar replacement, we compare
against an adjusted form. The adjusted form is Scalar Re-
placement run with a limit on the number of replacements.
‘We chose the limit so as to achieve the fastest running time.

The benefit bar discussed in Section 4.2.3 keeps us from over-
optimizing these stencils. In particular, we do not attempt
to optimize the IYOKOI benchmark at all. The benefit gained
is too small and performance degrades because of the more
complicated C code that the ZPL compiler would produce.

Figure 13 shows the effect of the optimization across all of
the Stencil Micro-Benchmarks as well as class S of the NAS
MG benchmark on a 400 MHz Pentium III. For this exper-
iment, the C compiler serving as the back-end to the ZPL
compiler is the GNU gcc compiler version 2.91.66 with the
-03 flag.

Scalar Replacement with unrolling achieves on average a
27% improvement over the unoptimized code, whereas ASE
with unrolling achieves a 50% average improvement. The
advantage of ASE comes in part from the elimination of
computation which Scalar Replacement does not do. It is
also a result of the introduction of less scalar variables. For
the integer benchmarks, ASE improves over Scalar Replace-
ment by 14% whereas for the floating point benchmarks,
ASE improves over Scalar Replacement by 25%. This dif-
ference is a result of increased register pressure in the float-
ing point codes. Since far more scalar variables are used
for Scalar Replacement than ASE (the advantage of using
one variable to store the sum of multiple array references is
lost), the resulting C code is more complex.

A major benefit of the approach taken by ASE is seen in
the optimization of the INOISE2 stencil which is separable.
For this stencil, ASE achieves a 125% speedup. The effect
of reinsertion and optimizing between stencils in multiple
array statements also has a positive impact on the total
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SR AARR | SR VARS
Benchmark AADD | AMUL | AARR | VARS | MAX | ADJ | MAX | ADJ
DBIGBIHARM -8 +1 -15 11 -23 -20 23 20
DISO3X3 -2 0 -4 3 -9 -9 9 9
DISO5XH -9 0 -12 5 -25 -25 25 25
DLILBIHARM -2 0 -4 3 -11 -3 11 3
DRESID -10 +1 -13 6 -20 -17 24 21
DROW3X3 -4 0 -6 3 -9 -9 9 9
DRPRJ3 -6 0 -8 3 -15 -6 15 6
IBIGLAPLACE -52 +8 -93 58 -97 -97 97 97
ILINEDET -20 0 =37 13 -48 -48 9 9
IMORPH -13 0 -20 10 -21 -21 21 21
INEVATIA -66 +3 -100 30 -136 | -136 25 25
INOISE1 -2 0 -4 3 -9 -9 9 9
INOISE2 -16 -1 -20 5 -25 -25 25 25
INOISE3 -25 +1 -36 16 -49 -49 49 49
IPREWITT -4 0 -7 6 -12 -12 9 9
IROBINSON -6 0 -17 8 -24 -24 9 9
ISOBEL -4 0 -7 6 -12 -12 9 9
IWIDELINEDET -23 +1 -41 19 -T2 -66 41 37
IYOKOI 0 0 0 0 -12 -4 9 3
IZEROCROSS -151 +4 -193 20 -211 | -211 25 25

Table 2: Optimization effect on the Stencil Micro-Benchmarks of both ASE And Scalar Replacement. Columns two
through four show the change in the number of additions, multiplications and array references in the produced C code
after the ASE optimization. Column five shows how many scalar variables are introduced in the C code. Columns six
and seven show the relevant analogous quantities for Scalar Replacement.

performance shown. Through reinsertion, we achieved a 5%
speedup on the stencil kernels that were affected and, by
optimizing between statements, we improved by 9% on the
affected benchmarks.

6. CONCLUSIONS AND RELATED WORK

The importance of stencils to scientific computing is behind
the rich history of techniques to optimize such computa-
tions. In 1991, Bromley et al. [7] developed and reported
on a specialized stencil compiler for the Connection Ma-
chine CM-2. Three years later, Brickner et al. [6] extended
this work for the CM-5. Their appropriately named Convo-
lution Compiler is designed specifically for the Connection
Machine computers, though a number of ideas described in
their papers were general purpose, especially those focusing
on improving inter-processor communication. The compiler
used a special register allocation scheme to eliminate redun-
dantly loading the same locations in memory and a library of
hand-optimized microcode to eliminate unnecessary commu-
nication for specific stencil patterns. Only stencils specified

with HPF’s CSHIFT intrinsic were detected.

Roth et al. [19] do similar optimizations to the convolution
compiler including the elimination of redundant loads to
memory, but their strategy is more general. It involves de-
tecting stencils not specified solely through CSHIFT intrinsics
but also those specified with F90 array syntax. In addition
to recognizing more stencils, they also perform more gen-
eral optimizations that apply to more types of stencils and
work on a variety of platforms. Again, they focus mostly on
parallel performance and attempt to eliminate redundant
communication; their focus is not on redundant computa-
tion.

Interestingly, at about the same time, work on optimizing
stencil computations was being done to serialize parallel pro-
grams. Here the focus was indeed on eliminating compu-
tation. Ernst [12] discusses eliminating redundant compu-
tation in stencils much like we do, but his focus is only on
one-dimensional stencils. His methods rely on loop unrolling
and loop differencing to uncover the redundant computa-
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tions. Our work focuses only on multi-dimensional stencils
and finds necessarily orthogonal redundancies.

In a similar vein, Liu and Stoller [18] optimize aggregate
array computations. They effectively optimize multidimen-
sional stencils when the stencil is expressed with loops, but
do not consider stencils with more than one weight.

Fisher et al. [13, 14] optimize two-dimensional stencils much
like we do, but focus on compiling for SIMD machines using
a specialized language feature called “directionals.” Their
work does not scale to large stencils and does not work on
modern MIMD-style machines.

Scalar Replacement is a well-studied optimization technique
[8]. Our subsumption of this optimization is limited when
compared to some approaches [9] in that we do not detect
possible applications in the presence of control flow.

In conclusion, we have developed a new technique to cope
with the myriad of common subexpressions that span across
loop boundaries in large stencil kernels. We have demon-
strated the dire performance costs of not implementing this
optimization, either by hand or automatically, and have ar-
gued that the automatic approach is more desirable.

Future directions of this work include increasing the breadth
for which this algorithm applies including determining if it is
possible to alter traditional common subexpression elimina-
tion algorithms to take advantage of the neighborhood tablet
and achieve better performance over highly associative ex-
pressions. It is also desirable to create a better mechanism
for optimizing towards a particular machine at the ZPL level
of compilation. Currently, all machine specific optimizations
are done by the underlying C compiler. Flags are used to
switch between the vector, scalar and unroll versions of the
code we produce.
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