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ABSTRACT
Gather and scatter are data redistribution functions of long-
standing importance to high performance computing. In
this paper, we present a highly-general array operator with
powerful gather and scatter capabilities unmatched by other
array languages. We discuss an efficient parallel implemen-
tation, introducing three new optimizations—schedule com-
pression, dead array reuse, and direct communication—that
reduce the costs associated with the operator’s wide appli-
cability. In our implementation of this operator in ZPL,
we demonstrate performance comparable to the hand-coded
Fortran + MPI versions of the NAS FT and CG bench-
marks.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—concurrent, distributed and parallel languages

General Terms
Languages

Keywords
parallel programming, gather, scatter, array languages, ZPL

1. INTRODUCTION
Highly-general data remapping operations, like gather and

scatter, are noticeably absent from most parallel program-
ming languages. Instead, scientists must rely on low-level
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mechanisms to redistribute data across processors. In this
paper, we introduce the remap array operator, #, that pro-
vides power unmatched by the array operators of Fortran
90 and APL. We demonstrate its use and an efficient imple-
mentation in the context of ZPL, a parallel array language.

Gather and scatter are of long-standing importance to
high performance computing, having been included in Cray
Fortran for decades. Being data transfer operations, gather
and scatter require a source array, S, a destination array, D,
and a specification of how the elements are to be rearranged.
As the names imply, gather describes where a sequence of
elements comes from and scatter describes where a sequence
of elements goes to. Accordingly, gather can be thought of
logically as operating on the right hand side of an assignment
statement and so is written with the remap operator as

D := S#[<specification of index positions>];

Symmetrically, scatter can be thought of logically as oper-
ating on the left-hand side of an assignment statement and
so is written as

D#[<specification of index positions>] := S;

The specification of index positions is defined by a se-
quence of arrays called map arrays. For gather, the map
arrays must have the same shape as the destination array;
for scatter, the source array. In addition, for gather, the
number of map arrays required for the remap is the rank
of the source array; for scatter, the destination array. In
general, if D and S are the destination and source arrays,
d and s are the ranks of these arrays, and M1, M2, ... are
the map arrays, then gather remap implements

Di1,i2,··· ,id
:= SM1i1,i2,··· ,id

,M2i1,i2,··· ,id
,··· ,Msi1,i2,··· ,id

while scatter remap implements

DM1i1 ,i2,··· ,is
,M2i1,i2,··· ,is

,··· ,Mdi1,i2,··· ,is
:= Si1,i2,··· ,is

For example, ZPL’s built-in constant arrays, Index1 and
Index2, may be thought of, for the 3× 3 case, as given by

Index1 = 1 1 1 Index2 = 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

implying that the 2D transpose in ZPL is expressed with
either of the following lines:

D := S#[Index2, Index1];

D#[Index2, Index1] := S;



That is, the arrays of index values for the two dimensions
are simply interchanged.

The remap operator is clearly powerful, but implement-
ing such a communication operator in a high-level language
such as ZPL is a concern because of its potential expense.
Specifically, to implement a gather of the form

D := S#[M1, M2, ..., Md];

implies potential for considerable data motion (the problems
are identical for scatter). Even presuming that all d + 2
arrays are allocated to processors identically, an all-to-all
communication is typically required to specify where the
elements are to be moved to. A second all-to-all communi-
cation is potentially required to transfer the elements. Fur-
ther, because the data is coming from or going to arbitrary
positions in the memory, considerable memory management
is necessary to marshal and distribute the data. Such gen-
erality is required in the most complex cases, but in many
common cases much less communication and memory man-
agement are possible. The technical problem considered in
this paper is: How can the remap operator for gather and

scatter be implemented efficiently in a high-level language?

The research goals are first to understand where the costs
are for remapping, and second to discover ways to optimize
those portions of the implementation so that they approxi-
mate the performance of hand-coded gather and scatter.

This paper’s contributions are as follows:

• We present an operator for arbitrary gathers and scat-
ters that has unique semantics and provides power un-
matched by other array languages including APL and
F90, resulting in cleaner, more understandable code.
Moreover, the operator is general enough to apply to
most array languages.

• We discuss a parallel implementation for the opera-
tor and introduce optimizations for schedule compres-
sion, dead array reuse, and direct communication that
lessen the costs of the operator’s generality.

• We demonstrate comparable performance to efficient,
hand-coded Fortran + MPI benchmarks.

This paper is organized as follows. In the next section,
we discuss related work. In Section 3, we introduce the
ZPL language. In Section 4, we describe the remap opera-
tor through a series of examples that demonstrate its power,
and we discuss our implementation of the operator in ZPL.
In Section 5, we evaluate the performance of the remap op-
erator in the context of the NAS FT and CG benchmarks,
and, in Section 6, we conclude.

2. BACKGROUND AND RELATED WORK

2.1 Traditional Array Remappings
Fortran remains the most widely-used language for sci-

entific computing. The Fortran 90 and 95 revisions [1, 12]
include several extensions for array-based programming, in-
cluding the ability to refer to array sections using a slic-
ing notation. While Fortran allows programmers to use in-
dex vectors to specify irregular array accesses, it supports
a “cross-product” interpretation of the map vectors, rather
than ZPL’s “elementwise” style. For example, the Fortran
expression A(I(:), J(:)) results in a 2-dimensional array
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Figure 1: An example contrasting ZPL’s element-
wise remap semantics with Fortran’s cross-product
semantics. The first column shows array A, the
source array for all examples. The next two columns
show three pairs of map arrays, I and J. The fi-
nal two columns show the result of applying these
map arrays to A in ZPL and Fortran. (a) When
using 1-dimensional map arrays, ZPL generates a
1-dimensional result while Fortran generates a 2-
dimensional result using the cross-product of I and J

thereby forcing the rows and columns to stay aligned
as in a matrix pivot. (b) ZPL can use multidimen-
sional maps to generate a multidimensional result,
arbitrarily scrambling, replicating, and deleting val-
ues. (c) Multidimensional maps with replicated val-
ues (arrows) can be used to express efficient cross-
product semantics as in Fortran.

whereas in ZPL the equivalent expression would result in
a 1-dimensional array (Figure 1a). ZPL’s remap opera-
tor creates higher-dimensional expressions by using higher-
dimensional map arrays; these are illegal in Fortran (Fig-
ure 1b). When cross-product semantics are desired, ZPL
programmers would use higher-dimensional map arrays with
replicated values, as described in Section 3.3 (Figure 1c).

One way to express ZPL-style elementwise remaps in For-
tran is to flatten the multidimensional source array down
to one dimension and then use a single index vector to ac-
cess its elements arbitrarily. The result would then have to
be reinterpreted as a higher-dimensional array to return to
the original problem space. Alternatively, loops and scalar
indexing can be used to access the array’s values one at a
time as in traditional scalar languages like C. These idioms
weaken the multidimensional array abstraction by failing to
cleanly express atomic random access to its elements.

APL [15] is a well-known array language which was first
introduced in the 1960’s and remains in use today. It pro-
vides many built-in operators, including special operators
for transpose and rotate (special instances of remapping).
Unlike Fortran, APL supports indexing into arrays using
higher-dimensional maps, but this still has cross-product se-
mantics. For example, consider the APL statement:

D ← S[M1; M2]

If S, M1, and M2 are all 2-dimensional arrays, D would be
a 4-dimensional array where Di,j,k,l = SM1i,j ,M2k,l

. APL
programmers can flatten the source array to perform an



elementwise remap, as in Fortran, but they can use mul-
tidimensional map arrays to produce a higher-dimensional
result. For example, in the statement:

D ← S[M ]

if S is 1-dimensional and M is 2-dimensional, D would be a
2-dimensional array with the same size and shape as M .

2.2 Parallel Array Remappings
The vast majority of today’s parallel programs are writ-

ten using a sequential language like Fortran or C in a single

program, multiple data (SPMD) style with a communica-
tion library to transfer data between the program instances.
MPI [18] is the most widely-used example of such a library.
Its core functionality provides the programmer with send
and receive constructs for passing messages between pro-
gram instances. Higher-level functionality is also provided
in the form of collective communication calls, including rou-
tines that support scatter, gather, and all-to-all communica-
tion patterns. While these routines are quite general, their
argument lists are nontrivial, requiring the user to specify
data and buffer layouts in memory, the amount of data being
sent, and the amount expected to be received from cooper-
ating processors. While such parameters are not unreason-
able for a communication library like MPI, they force pro-
grammers to take a processor- and memory-centric view of
their programs. In contrast, ZPL’s remap operator is data-
centric, factoring details of data distribution and communi-
cation away from the specification of an array expression’s
global access pattern.

It should be noted that the overhead of MPI’s collec-
tive communication routines is sufficient that in degenerate
cases, programmers can often achieve a performance bene-
fit by replacing the collective call with individual sends and
receives. Examples of this can be found in the replicated
vector transpose operation for the NAS CG benchmark. For
arbitrary problem sizes and processor grids, all-to-all com-
munication would be required for this operation, and an
MPI Alltoallv() call would be appropriate. However, by
restricting the size and shape of the processor grid, as well as
the problem size, the NAS implementation uses a single send
and receive per processor to achieve the minimal amount of
communication required. Ideally, such optimizations could
be encapsulated in higher-level abstractions, allowing the
user to focus on the algorithm at hand rather than details
of tuning the implementation and restricting its generality.

SHMEM [3] is an alternate communication library. It
strives to support a shared-memory model on distributed-
memory architectures via one-sided communication. Like
MPI, SHMEM supports gather and scatter data transfers in
the form of shmem ixget() and shmem ixput(). The one-
sidedness of the SHMEM routines allows data to be read or
written to a processor’s memory without explicitly coordi-
nating with that processor. This provides a nicer abstrac-
tion for scattering and gathering data, yet still imposes a
processor- and memory-centric view of the algorithm on the
user.

Many of the current wave of parallel languages also utilize
the SPMD model, but provide higher-level abstractions to
express data transfer between the program instances. Ex-
amples include Co-Array Fortran [17] and Unified Parallel C
(UPC) [6]. Both of these languages are a dialect of a tra-
ditional language, which eases the learning curve for expe-

rienced Fortran and C users. However, each language also
inherits its array access idioms from the base language, im-
plying no additional power for expressing array remaps. Co-
Array Fortran supports a new type of array dimension—the
co-dimension—which spans the executing instances of the
program. Indexing into this dimension allows programmers
to refer to data on remote processors. This results in a much
more abstract view of communication than either MPI or
SHMEM, yet still requires the programmer to express their
algorithm with a localized per-processor view. UPC sup-
ports similar features for indexing into program instances
and adds additional concepts for referring to shared data.

Titanium [21] is an SPMD-style language based on Java,
yet it introduces its own multidimensional array type for
reasons of performance and flexibility. Titanium’s arrays
support scatter and gather methods which use a list of in-
dices to scatter/gather a 1D vector of values to/from a mul-
tidimensional array. Titanium users can therefore remap a
multidimensional array by gathering the source array’s val-
ues into a vector temporarily and then scattering them to
the destination array. However, programmers typically de-
clare one Titanium array per processor in the SPMD style
and move data between processors manually, typically us-
ing array copy methods. The implication is that the scatter
and gather methods can only be applied to these local per-
processor arrays and not to the complete array that they
represent. As with the other SPMD languages, program-
mers must be aware of processors when expressing parallel
remaps.

2.3 Scheduling Communication
Traditionally, in parallel computation, unknown access

patterns caused by indirect indexing are implemented us-
ing the inspector-executor techniques of Saltz, et al. [16,
20]. In such techniques, an inspector loop nest first ob-
serves the array indices, tracking data dependences. Then
the executor implements the actual computation based on
the inspector’s findings. The base implementation of ZPL’s
remap operator also uses inspector-executor techniques to
determine the communication required by the map arrays
and then implement the array statement. It is worth noting
that while some inspector-executor schemes seek to paral-
lelize and preserve data dependences in sequential user code,
ZPL’s statements are explicitly parallel and have clear data
dependences. Thus, our inspector is concerned with maxi-
mizing performance rather than preserving correctness.

High Performance Fortran (HPF) [14] is similar to ZPL
in that it provides a global view of the program and syn-
tactically separates computation from the specification of
processor grids and data distributions. Unlike ZPL, HPF
does not restrict operations between arrays with different
data distributions. Thus, a statement like C = A + B may
or may not require communication depending on the distri-
butions of A, B, and C. A great deal of research in the HPF
community has focused on generating efficient and minimal
communication for HPF programs [13, 5]. Some of these ef-
forts apply strength reduction to communication, replacing
general all-to-all communications with reductions or nearest
neighbor exchanges. ZPL handles this issue by providing
distinct array operators for different styles of communication
combined with a performance model that lets users reason
about the communication induced by each [8].

In the absence of successful optimizations, HPF state-



ments require similar inspector-executor constructs as ZPL’s
remap operator. A recent work of interest strives to min-
imize the overhead of these inspectors by giving users a
means of naming, specifying, and capturing communication
schedules [4]. Thus, users may assert that a communication
schedule is identical between multiple invocations of a loop
or from one loop to another. This allows the compiler to
amortize the inspector overhead across multiple statements
in cases where it otherwise would have to take a more con-
servative approach. In our work, we rely on the compiler
to determine when remap communication schedules can be
reused. As ZPL programs grow in size and complexity, it is
possible that we will want to provide the user with similar
cues to indicate when a remap’s schedule can be reused.

3. ZPL
ZPL is a data-parallel array programming language devel-

oped at the University of Washington. It provides the pro-
grammer with a global view of the computation and trans-
parent control of communication. The current ZPL imple-
mentation is based on a compiler that translates the ZPL
code to a C program with calls to a chosen communication
library, including MPI and SHMEM. In this section we intro-
duce aspects of ZPL relevant to this paper. The interested
reader is referred to the literature for more information [7,
19].

3.1 Regions and Parallel Arrays
Central to ZPL is the concept of the region. A region

is an index set with no associated data. The region serves
two fundamental purposes in ZPL: declaring parallel arrays
and specifying parallel computation. To declare a parallel
array, the programmer specifies its shape and size using a
region; alternatively, in the case of dynamic parallel arrays,
the programmer specifies the region in the program. In the
following example, we (1) declare a region R to be the index
set containing (i, j) for all i and j such that 1 ≤ i, j ≤ n,
(2) declare a region IntR to contain the interior indices of
R, 1 < i, j, < n, (3) declare arrays A, B, and C over region
R, and (4) assign the interior elements in C the sum of the
corresponding elements in A and B:

1 region R = [1..n, 1..n];

2 IntR = [2..n-1, 2..n-1];

3 var A, B, C : [R] double;

· · ·
4 [IntR] C := A + B;

Since A, B, and C are defined over the same region, they
are distributed in the same way over the processors, and no
communication is required to compute the statement in line
4. Had A, B, and C been declared with differing distributions,
the code in line 4 would result in a compile or runtime error.
Instead the statement would need to be rewritten using an
array operator to manage the data movement.

3.2 Array Operators
In ZPL, all communication results directly from the use

of array operators. Programmers are thus provided with
a syntactic cue as to the type and amount of communica-
tion occurring in parallel executions of their codes. This
syntactic cue provides a simple, yet powerful, performance
model [8] that further distinguishes ZPL from parallel pro-
gramming languages like HPF and UPC in which the pro-

grammer may not always see from the syntax that a state-
ment requires communication. In this section, we provide
a brief introduction to ZPL’s reduction and flood operators
in preparation for the in-depth introduction to the remap
operator’s usage in Section 4.

3.2.1 The Reduction Operator
The reduction operator, op<<, reduces the values in an ar-

ray to a lower-rank slice of the array or a single scalar value.
A common use of the reduction operator is to compute the
minimum of all the elements in an array. We might also use
a reduction to find the sums of the elements in every row of
an array and store these sums in the first column of another
array. These examples follow:

1 [R] val := min<< A;

2 [1..n, 1] B := +<< [R] C;

We assume in these examples that A, B, and C are as declared
before while val is declared as a scalar double. Line 1 com-
putes the minimum of every element in A with indices in
R and stores the result in val. Line 2 uses two regions to
control the computation. The column region controls where
the result is stored in B. The first dimensions of the two re-
gions match, so we only reduce over the second (collapsed)
dimension. As a rule, we reduce over each dimension that
is collapsed. We use + to find the sum of the elements in
every row. In general, reductions may use several built-in
or user-defined operators [11].

3.2.2 The Flood Operator
The flood operator, >>, provides nearly the opposite be-

havior of the reduction operator. With this operator, the
programmer is able to replicate a value throughout an array
or values in a slice of the array to a larger slice. For exam-
ple, suppose the programmer wants to multiply the value in
the (1, 1) position of array A with every value in array B and
store the result in array C. One way to accomplish this is to
replicate that value in A throughout A as with the following
statements:

[R] A := >>[1, 1] A;

[R] C := A * B;

As written, the above code is inefficient: in total, the p

processors store the same value n2 times rather than p times.
In the next section, we discuss a type of region dimension
that allows for the efficient storage and computation of the
result of the flood operator.

3.3 Flooded Dimensions
The flood operator results in potentially redundant stor-

age on any given processor. The flooded dimension solves
this problem. A flooded dimension, *, is one in which ev-
ery value in that dimension is constrained to have the same
value. Each processor owning a piece of that dimension
stores only a single copy of that value. For example, the
code below multiplies an n × 1 column matrix by a 1 × n

row matrix to form an n × n square matrix. For simplicity,
we take the first column of array A to be the column ma-
trix and the first row of array B to be the row matrix. The
resulting product is stored in array C.



1 var Col : [1..n, *] double;

2 Row : [*, 1..n] double;

· · ·
3 [1..n, *] Col := >>[1..n, 1] A;

4 [*, 1..n] Row := >>[1, 1..n] B;

5 [R] C := Col * Row;

Since we need access to the row and column matrices over
the entire square region, it makes sense to replicate the ar-
rays with the flood operator. All communication occurs in
lines 3 and 4. The storage needed for the partial values,
Col and Row, is minimized. We could also write the same
computation without explicitly declaring the flooded arrays.
There is no change in the computation since the result of the
flood operator is an array with the appropriate flooded di-
mensions. This code is as follows:

[R] C := (>>[1..n, 1] A) * (>>[1, 1..n] B);

As an aside, flooded dimension are important for defining
the arrays Index1 and Index2 that were informally men-
tioned in the introduction. These built-in constant arrays
belong to a series of arrays, Indexi, where each contains the
values of the indices in the ith dimension of the region scope
and all dimensions other than the ith are flooded.

4. THE REMAP OPERATOR
ZPL’s remap operator, #, performs either gather or scatter

operations on arrays. The general form of the gather is

[R] D := S#[M1, M2, ..., Ms];

where the region, R, the destination array, D, and the map
arrays, M1, M2, ..., Ms, are of the same rank and the source
array, S, is of rank s. In addition, D must be writable over
R and M1, M2, ..., Ms must contain valid indices for S. The
general form of the scatter is

[R] D#[M1, M2, ..., Md] := S;

where the region, R, the source array, S, and the map arrays,
M1, M2, ..., Md, are of the same rank and the destination array,
D, is of rank d. In addition, S must be readable over R and
M1, M2, ..., Md must contain valid indices for D.

In this section we demonstrate the power of the remap
operator with a number of examples, examine the use of the
remap operator in ZPL versions of the NAS FT and CG
benchmarks, and discuss the implementation of this opera-
tor in ZPL.

4.1 Some Basic Examples
For the following examples, let R be a region containing

the indices (i, j) for all i and j such that 1 ≤ i, j ≤ n and let
A and B be arrays of double-precision floating-point numbers
declared over the region R.

4.1.1 Row Permute
Problem: If M is a parallel array of integers declared over

R and the rows of M contain permutations of the integers
between 1 and n, then permute the elements in the rows of
A according to M.

Solution: The following two statements suffice:

[R] A := A#[Index1, M];

[R] A#[Index1, M] := A;

In the gather, the map array M specifies where the elements
are to be mapped from whereas, in the scatter, M specifies
where the elements are to be mapped to.

4.1.2 Skew
Problem: A common use of the remap operator is to

permute the array elements in a structured way. The skew
permutation shows up in certain numerical algorithms. Per-
mute the data in array A so that the elements in row i are
cyclically shifted to the right i− 1 times.

Solution:

[R] A := A#[Index1, ((Index2+Index1-2)%n)+1];

Note the use of the modulus operator, %. Using the same
maps, we can write a similar computation with the scatter:

[R] A#[Index1, ((Index2+Index1-2)%n)+1] := A;

In this case the direction of the shift is reversed.

4.1.3 Redistribute
Problem: Let Z be an array of the same shape and size

as A, but assume its distribution is different. Copy the data
in Z to A.

Solution: The following results in a compile or runtime
error:

[R] A := Z;

Communication may be necessary, but there is no hint to the
compiler or programmer of this eventuality. Since no logical
remapping is taking place, only a physical redistribution,
the identity gather suffices:

[R] A := Z#[Index1, Index2];

The identity scatter results in the same movement, though
A’s region cannot specify it:

[1..n, 1..n] A#[Index1, Index2] := Z;

4.1.4 Diagonal Replicate
Problem: Copy the main diagonal of array A to a repli-

cated row array. This problem illustrates gather’s one-to-
many mapping.

Solution:

var Row : [*, 1..n] double;

· · ·
[*, 1..n] Row := A#[Index2, Index2];

This solution cannot be implemented with the scatter oper-
ator which does not support one-to-many mappings.

4.1.5 Diagonal Reduce
Problem: Compute the sum of the elements in each col-

umn of array A and leave the results in the main diagonal
of array B. This problem illustrates scatter’s many-to-one
mapping.

Solution:

[R] B := 0;

[R] B#[Index2,Index2] += A;

The += assignment operator resolves collisions. Symmetric
to the previous example, a gather would be insufficient. It
is interesting to note that the reduction operator may be a
better choice. By reducing to a flooded row array a basic
assignment could move the results to the main diagonal of
B, and we could take advantage of the parallelism inherent
to addition’s associativity.



4.1.6 Rank Change
Problem: Compute the matrix multiplication of A × B

using bulk communication.
Solution:

1 region IJ = [1..n, 1..n, *];

2 JK = [*, 1..n, 1..n];

3 IK = [1..n, 1, 1..n];

4 IJK = [1..n, 1..n, 1..n];

5 var C : [IK] double;

6 A3 : [IJ] double;

7 B3 : [JK] double;

· · ·
8 [IJ] A3 := A#[Index1, Index2];

9 [JK] B3 := B#[Index2, Index3];

10 [IK] C := +<< [IJK] (A3 * B3);

11 [R] A := C#[Index1, 1, Index2];

Since arrays of different rank in ZPL are distributed across
the processors differently, programmers must use the remap
operator to change ranks. In the code above, each 2D array
is promoted into 3D space by replicating it in a single di-
mension (lines 8 and 9). These flooded arrays are multiplied
and accumulated in the final dimension to form the product
(line 10). The product is then remapped to a 2D array (line
11). This algorithm is described in the literature [9].

4.2 NAS FT 3D Transpose
The NAS FT benchmark [2] numerically solves a 3D par-

tial differential equation using forward and backward Fast
Fourier Transforms (FFTs). The computation involves solv-
ing 1D FFTs on each dimension of a 3D array. The basic
idea is to always leave at least one dimension of the array
local to a processor in order to keep the complicated access
patterns required by a 1D FFT from inducing communica-
tion. After computing an FFT on the local dimension, the
array is transposed, if necessary, so that a different dimen-
sion is local. If two dimensions are distributed (2D layout),
the array is transposed twice to compute the three FFTs; if
only one dimension is distributed (1D layout), the array is
transposed only once to compute the three FFTs.

In the 1D layout, we distribute only the first dimension.
Note that in the Fortran code the opposite is done because
of the column-major layout choice. Given the region decla-
rations

region RXYZ = [1..nx, 1..ny, 1..nz];

RYZX = [1..ny, 1..nz, 1..nx];

and knowing that X1 is first declared over RXYZ and then
reallocated over RYZX while X2 is first declared over RYZX

and then reallocated over RXYZ, the backward and forward
transposes in ZPL are given by

[RYZX] X2 := X1#[Index3, Index1, Index2];

· · ·
[RXYZ] X2 := X1#[Index2, Index3, Index1];

These two lines of code are equivalent to 88 lines in the
Fortran + MPI implementation. In Fortran + MPI, instead
of regions, loops guide the computation, and an array is used
to store the different dimension lengths for the transposed
arrays. Communication is specified with MPI function calls
that require specifying processor dependent information.

(c)

(a) Conceptual replicated vector transpose

(b)[Row] W := P#[Index2,Index1];

[Row] W := P#[Index2,src_ind];
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Figure 2: Three illustrations of the replicated vector
transpose of the NAS CG benchmark: (a) a concep-
tual interpretation of the data movement, (b) an im-
plementation on a 2×4 processor grid using the stan-
dard transpose expression, and (c) an implementa-
tion on a 2× 4 processor grid where the second map
is specified so as to induce a one-to-one communi-
cation pattern. The shaded values are those that
are copied and arrows indicate interprocessor data
movement.

4.3 NAS CG Replicated Vector Transpose
The NAS CG benchmark [2] estimates the largest eigen-

value of a symmetric positive definite sparse matrix by the
inverse power method. The main loop contains a sparse
matrix vector multiplication, several reductions, and a repli-
cated vector transpose.

In the replicated vector transpose, the values in a column
vector are transposed to a row vector. Figure 2(a) illustrates
the data movement without regard to implementation. In
ZPL, the row and column vectors are defined as follows:

region Row = [*, 1..n];

Col = [1..n, *];

var W : [Row] dcomplex;

P : [Col] dcomplex;

We can transpose the values in P to W with the following
statement:

[Row] W := P#[Index2, Index1];

Figure 2(b) illustrates the parallel implementation of this
transpose on a 2 × 4 processor grid. In this case, the com-
munication pattern is not one-to-one. Some processors are
sending data to processors that do not need the data (be-
cause it is replicated there), other processors are sending
data to two processors, and still other processors are not
sending data at all.

If each processor specifies an index that points it to a
unique processor, then we can achieve a one-to-one com-
munication pattern on both 2k × 2k and 2k × 2k+1 proces-
sor grids. In ZPL, we use a scalar variable, src ind, to
achieve this pattern. If rows and cols are the number of
row and column processors and row (0 ≤ row < rows) and
col (0 ≤ col < cols) identify the computing processor, then



we set src ind with the formula

row ×
�

n

rows � + � col × �
n

cols ��� mod � n

rows � + 1

The statement

[Row] W := P#[Index2, src ind];

implements the improved communication pattern, illustrated
in Figure 2(c).

The NAS Fortran + MPI implementation achieves this
same communication pattern, but with less generality. As
with ZPL, each processor determines a unique processor
with whom to communicate. Then, unlike in ZPL, single
matching MPI send and receive calls are used to move the
data. Since there are only single calls, the implementation
can only run on 2k × 2k and 2k × 2k+1 processor grids. To
make it more general would require significant work. The
ZPL version runs successfully on different processor grids,
though the communication pattern is not necessarily one-
to-one on the different grids.

4.4 Implementation
The two-sided message-passing implementation of the gen-

eral remap operator is non-trivial. There is the potential for
all-to-all communication, and before the actual data can be
transmitted between processors, the pattern of communica-
tion must first be established. In the case of the gather, the
processors do not initially know where they must send data,
and in the case of the scatter, the processors do not initially
know from where they must receive data.

Figure 3 illustrates the basic two-sided message-passing
implementation of both gather and scatter versions of the
remap operator. These implementations are identical up to
line 12. In the initial loop, lines 2 to 7, we compute the pro-
cessor map, per-processor buckets of local indices, and local
counts. The processor map contains the processor number
that owns the value pointed to by the map arrays. The buck-
ets of local indices are filled with the indices specified by the
map arrays such that the bucket for the processor owning a
given index contains that index. The local counts are set to
the number of indices in each bucket of local indices.

We communicate between the processors in lines 8 to 12.
The local counts are sent to the other processors’ remote
counts so the remote count of processor q on processor r

equals the local count of processor r on processor q. Simi-
larly, the buckets of local indices are sent to corresponding
buckets of remote indices. The counts are sent before the
indices so that the buckets for the remote indices may be
allocated to the proper size.

The gather and scatter differ in lines 13 to 22. We discuss
the gather first. In the loop of lines 13 to 14, we fill per-
processor buckets of local data from the source array. We use
the buckets of remote indices to read from the source array
in an arbitrary order. The buckets of local data are filled
in order. Then, in lines 15 to 17, the local data is sent to
remote data buckets. The last step, lines 18 to 22, is to copy
the remote data into the destination array. Here we read
from the remote data buckets in order and, by traversing the
region, write to the destination array also in order. We use
the processor map to select which remote data bucket to read
from. Since the indices used by the remote processor were
in the order of the region traversal, we obtain the correct
result.

The scatter is symmetric to the gather, differing in the
following way. We fill the local data buckets, reading from
the source array in order. We then write to the destination
array in an arbitrary order. Note the fundamental differ-
ences between the scatter and the gather. In the gather, we
read from an array in a cache-unfriendly way whereas, in
the scatter, we write to an array in a cache-unfriendly way.
More distinctions extend to the parallel implementation. In
the scatter, we read from the source array before requiring
the remote counts and indices; in the gather, we need the
remote counts and indices before reading from the source
array.

These distinctions lead us to believe that we should be
able to tell whether to prefer the scatter or the gather based
on certain rules of thumb if we are in a situation where ei-
ther applies. For example, we could use either the scatter
or the gather to write the 2D transpose of Section 1, the
redistribution of Section 4.1.3, and the 3D transpose of Sec-
tion 4.2. However, it is unclear which is preferable in these
situations. Nonetheless, the importance of an optimization
discussed in Section 4.5.4 suggests we favor the gather since
this optimization is less readily applicable to the scatter.

4.5 Optimizations
The generality of the remap operator and its wide applica-

bility make it slower than the other array operators in ZPL.
Indeed, it is the communication operator of last resort. Even
so, there are a number of optimizations that greatly improve
its efficiency. In this section, we discuss a number of general
optimizations. We have not focused on specific idiomatic
optimizations in our implementation, though it is easy to
imagine several that could further improve our results.

4.5.1 Map Saving/Sharing
The remap operator is commonly used to perform stylized

collective communication. Examples include transposing ar-
rays or slices of arrays, rotating arrays or slices of arrays,
translating arrays or slices of arrays, etc. Moreover, such
uses might occur within the main loop of a program. Great
benefit may be reaped by caching copies of the counts, in-
dices, and processor map so that they do not need to be
recalculated every iteration. We call this optimization map

saving since we save the maps used to remap the data.
If the region and map arrays remain unchanged between

two instances of the same remap operator, we can skip lines
1 to 12 of Figure 3 for both the scatter and gather. There
are two ways to implement this optimization; either we may
use static analysis or we may use a more dynamic approach.
The static approach is more conservative but may result in
cleaner and faster code. We opt for the dynamic approach
due to the optimization’s importance and because the addi-
tional runtime support is not substantial.

The optimization is as follows. If the map information
exists when we come to the start of the gather or scatter,
we use it. Otherwise, we recompute the map. Additionally,
wherever the region or map arrays change in the program, we
destroy the map information. Care is taken to assure that if
the map arrays are changed on any processor, the map infor-
mation is destroyed on all processors. ZPL’s programming
model lets us do this without the need for communication.

Another benefit of the dynamic scheme is that it aids an-
other optimization called map sharing. In this optimization,
the map information is shared between remap operators that



Gather Implementation Scatter Implementation
[R] D := S#[M1, M2, ..., Mk]; [R] D#[M1, M2, ..., Mk] := S;

1 Lcnt[1..PROCS] := 0

2 forall i = (i1, i2, ..., ik) in R

3 M := (M1[i], M2[i], ..., Mk[i])

4 p := proc owns(M)

5 Pmap[i] := p

6 Lind[p][Lcnt[p]] := M

7 Lcnt[p] := Lcnt[p] + 1

8 forall p in 1..PROCS

9 send Lcnt[p] to p

10 receive Rcnt[p] from p

11 send Lind[p][1..Lcnt[p]] to p

12 receive Rind[p][1..Rcnt[p]] from p

13 forall p in 1..PROCS and e in 1..Rcnt[p]

14 Ldata[p][e] = S[Rind[p][e]]

15 forall p in 1..PROCS

16 send Ldata[p][1..Rcnt[p]] to p

17 receive Rdata[p][1..Lcnt[p]] from p

18 Lcnt[1..PROCS] := 0

19 forall i = (i1, i2, ..., ik) in R

20 p := Pmap[i]

21 D[i] := Rdata[p][Lcnt[p]]

22 Lcnt[p] := Lcnt[p] + 1

1 Lcnt[1..PROCS] := 0

2 forall i = (i1, i2, ..., ik) in R

3 M := (M1[i], M2[i], ..., Mk[i])

4 p := proc owns(M)

5 Pmap[i] := p

6 Lind[p][Lcnt[p]] := M

7 Lcnt[p] := Lcnt[p] + 1

8 forall p in 1..PROCS

9 send Lcnt[p] to p

10 receive Rcnt[p] from p

11 send Lind[p][1..Lcnt[p]] to p

12 receive Rind[p][1..Rcnt[p]] from p

13 Lcnt[1..PROCS] := 0

14 forall i = (i1, i2, ..., ik) in R

15 p := Pmap[i]

16 Ldata[p][Lcnt[p]] := S[i]

17 Lcnt[p] := Lcnt[p] + 1

18 forall p in 1..PROCS

19 send Ldata[p][1..Lcnt[p]] to p

20 receive Rdata[p][1..Rcnt[p]] from p

21 forall p in 1..PROCS and e in 1..Rcnt[p]

22 D[Rind[p][e]] := Rdata[p][e]

Figure 3: Pseudo-code for the implementation of the Gather and Scatter operators.

access the same region and set of map arrays at different
static points in the program. In the NAS CG benchmark,
for example, the same remap occurs twice within the main
loop.

4.5.2 Computation/Communication Overlap
A common optimization parallel programmers often em-

ploy is to overlap communication with computation in order
to hide latency. This optimization applies to the remap op-
erator in ZPL. The compiler will automatically push inde-
pendent computations between lines 16 and 17 of the gather
implementation and between lines 19 and 20 of the scatter
implementation as shown in Figure 3. In addition, the com-
piler will push independent computations between lines 11
and 12 of both remap forms. This additional push is done
with a lower priority because the map saving optimization
may eliminate this communication altogether. This opti-
mization cannot be applied by the MPI programmer to the
monolithic collective communication routines.

4.5.3 Schedule Compression
Stylized collective communication patterns like those men-

tioned in Section 4.5.1 benefit from encoding the processor
map and buckets of indices in such a way as to decrease the
storage and communication requirements and improve the
performance of indexing into the arrays when the potentially
arbitrary access pattern is actually a strided sequence. We
use strided run length encoding to store the processor map
and buckets of indices. Through a careful implementation,
we never need to use the full amount of memory necessary to
store unencoded representations. We use exactly the mem-
ory required to store the encoding plus a small constant
amount of space for the work of actually encoding the se-
quences. Moreover, our implementation is designed so that
if the encoding does not appear to have a benefit, we will

stop the encoding process early and use unencoded repre-
sentations.

We use a recursive scheme so we can encode the encoding
if this is beneficial. In our implementation, by default, we
base the number of recursive encodings on the rank of the
remap operator. This choice is based on the optimal number
of encodings we would need for the common redistribution
example of Section 4.1.3.

As a basic example of the strided run length encoding,
consider the sequence: 1, 2, 3, 4, 5, 6. Our run length
encoder would stream in this sequence and output: 1, 1, 6.
The initial value is 1, the stride is 1, and the length is 6.

The 2D transpose implemented with the gather demon-
strates the power of run length encoding the indices. As
we traverse the array in row major order, the map arrays,
Index2 and Index1, provide pairs of integers used to index
the source array. The stream of pairs

(1 1) (2 1) (3 1) (4 1) (1 2) (2 2) (3 2) (4 2) (1 3) (2 3)
(3 3) (4 3) (1 4) (2 4) (3 4) (4 4)

is easily compressed. One level of encoding produces

(1 1) (1 0) 4 (1 2) (1 0) 4 (1 3) (1 0) 4 (1 4) (1 0) 4

There are four sequences to decode. In the first sequence,
the initial pair is (1, 1), the stride is (1, 0), and the length
is 4. Since we are working on a 2D array, we use two levels
of encoding, and produce

(1 1) (1 0) 4 (0 1) 4

There is one sequence to decode which starts with the pair
(1, 1), the inner stride is (1, 0), the outer stride is (0, 1), and
the inner and outer lengths are both 4. In producing this
recursive encoding, the level one encoding is never produced,
not even as an intermediate result. The total memory used



to produce this encoding from the stream of indices is never
more than the memory to store the final result, 8 integers in
this case, and some constant amount of additional memory
for the computations.

4.5.4 Dead Source/Destination Reuse
The buckets of data used in the implementation of the

remap operator may consume significant memory. To avoid
this, we employ an optimization called dead source reuse and
dead destination reuse. If the destination array is dead be-
fore the remap, we use its memory for the local data buckets.
Note that in the case of the gather, it is relatively easy to
determine what data in the destination array will be over-
written. This is not the case for the scatter. If the source
array is dead after the remap, we may use its memory for
the remote data buckets. Then, in essence, we copy the
source array to the destination array, locally with possible
rearrangements of the data, send the data in the destination
array to the remote source array, and, lastly, copy the source
array to the destination array, again locally with possible re-
arrangements of the data.

This optimization is done by hand in the Fortran + MPI
implementation of the NAS FT 3D transpose. It is easy for
the ZPL compiler to determine that both the source and
destination arrays are dead, thus it is able to duplicate the
work of the Fortran programmer.

4.5.5 Direct Sending/Receiving
Both dead source reuse and dead destination reuse de-

crease the storage required to implement the remap oper-
ator, but an interesting case arises if, during either of the
local copies to the destination array or a data bucket, no
rearrangement of the data takes place. If the data is copied
in order from one array to another, a straight copy, there
is no reason to buffer the data. It may just be sent or re-
ceived directly. The difficult task, then, is to detect whether
a straight copy will take place. For this detection, the run
length encoding of Section 4.5.3 comes to the rescue.

A small, well-structured, easily-detectable encoding of the
indices is both necessary and sufficient to prove that the copy
from the source array to the data buckets in the case of the
gather or from the data buckets to the destination array
in the case of the scatter is a straight copy when coupled
with information about where the first and last elements are
placed in memory, the size of each element, and the number
of elements. It is even easier to tell if the other copy is
straight; we just need the information about the first and
last elements, the size of each element, and the number of
elements. If the data is dense in memory, we know it is
straight because, in these latter copies, we are copying the
data in order.

This optimization, performed dynamically by the ZPL
runtime, is equivalent to the straight-forward approach of
the Fortran + MPI version of CG. Due to the dynamic na-
ture, the ZPL implementation is more general, but also suf-
fers some overhead. More interestingly, this optimization
benefited the ZPL version of FT on some processor config-
urations though we did not anticipate this.

5. EVALUATION
In this section, we evaluate our implementation of the

remap operator in the context of the NAS CG and FT
benchmarks. The NAS parallel benchmarks are a suite of
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Figure 4: Charts showing line counts of the Fortran
+ MPI and ZPL implementations of the NAS FT
and CG benchmarks. The counts are subdivided
into lines used for communication, declarations, and
computation.

scientific applications and kernels representative of codes
scientists write for parallel computers [2]. The Fortran +
MPI provided implementations are highly-tuned. We com-
pare the NAS codes qualitatively first, then examine differ-
ences in memory usage and execution time. We evaluate
across three platforms: a Cray T3E, an IBM SP2, and a
LinuxBIOS/BProc cluster. These machines are further dis-
cussed in Figure 6.

5.1 Clarity
The remap operator and ZPL’s high-level constructs make

the programmer’s job easier. Figure 4 counts the lines of
code in the timed portions of the ZPL and Fortran + MPI
implementations of the NAS FT and CG benchmarks. Lines
of code is an imperfect metric for clarity, but yields im-
portant information nonetheless. Each ZPL implementation
requires less than half as many lines of code as the corre-
sponding Fortran + MPI implementations. The figures show
a breakdown of the lines of code into those used for com-
putation, declarations, and communication. The high-level
approach of ZPL eliminates the need for the programmer
to specify communication. The computation was written
with significantly fewer lines because of ZPL’s powerful ar-
ray syntax based on the region. For example, the savings in
implementing the 3D transpose remapping of the FT bench-
mark are enormous. Contrast the 88 Fortran + MPI lines
of code (not shown) to the 2 ZPL lines of code (shown in
Section 4.2).

5.2 Memory Usage
Memory usage is often as important a metric as execu-

tion time. Frequently, scientists would prefer to run their
applications using the largest possible data sets. Thus the
implementation of their code should use as little memory as
possible. Figure 5 shows the effect of the remap optimiza-
tions discussed in this paper on the total memory usage for
class C of the NAS FT and CG benchmarks running on 256
processors of a Cray T3E. The effects are similar on the SP2
and the cluster, and so are omitted.

For FT, the memory is subdivided into that needed for
several tables and for the three main arrays. For CG, the
memory is subdivided into that needed for the sparse ar-
ray and for the vectors. In addition, the memory used for
the remap is subdivided into that needed for the processor
map, the indices, and the data buckets. There is significant
memory overhead in the ZPL implementation of CG not
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Figure 5: Charts showing the effect of the remap
optimizations on the per-processor memory usage
during the execution of a remap for class C of the
NAS FT and CG benchmarks run on 256 processors
of a Cray T3E. In FT, the memory is subdivided be-
tween general program data and the three large ar-
rays; in CG, the memory is subdivided between the
sparse array and the vectors. For both benchmarks,
the memory used for the remap is subdivided be-
tween the processor map, the indices, and the data
buckets. From left to right, we compare different im-
plementations. The first two bars show the Fortran
+ MPI and optimized ZPL implementations. The
remaining four bars show the ZPL implementation
when certain optimizations are disabled: NM for no
map saving, NR for no run length encoding, NB for
no destination/source reuse, ND for no direct send-
ing/receiving, and NO for no optimizations.

connected to the remap operator. This stems from ZPL’s
general sparse array format described in the literature [10].

The optimized ZPL implementation of the remap oper-
ator uses nearly the same amount of memory as the For-
tran + MPI implementation. Disabling the map saving op-
timization has little effect on the memory usage alone. The
run length encoding, destination/source reuse, and direct
sending/receiving optimizations all have significant effects
on memory usage. Notice also that the map saving opti-
mization is detrimental if the maps are big. Thus, for the
FT benchmark, in which maps for different remaps are si-
multaneously saved, disabling run length encoding without
also disabling map saving results in significantly more re-
quired memory.

5.3 Performance
Figure 6 shows results for the NAS FT and CG bench-

marks for the class C problem size on increasing numbers of
processors on our three platforms. We show speedup graphs
for total time where the speedups are calculated over the
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Figure 7: Charts showing the effect of the remap
optimizations on the execution time of the transpose
portion of the NAS FT and CG benchmarks across
three different platforms: 256 processors of a T3E,
128 processors of an SP2, and 1024 processors of a
cluster. The NC bar refers to disabling the hand-
coded cache-blocking optimization in the Fortran +
MPI implementation of the NAS FT benchmark.
The other labels are as described in Figure 5.

best implementation’s time on the fewest number of proces-
sors for which any implementation could complete without
exhausting the memory. We show graphs of execution time
when examining the time consumed by the remap operator.
For all three platforms, we compiled ZPL to C and MPI. On
the T3E, ZPL could exhibit improved performance using a
SHMEM implementation.

The key observation is that the ZPL codes compete with
the lower-level, highly-tuned Fortran + MPI codes. The
speedup graphs show the total execution time to be com-
parable on all three platforms. The transpose time graphs
show that the optimized remap implementation performs as
well as the equivalent code in Fortran + MPI on both bench-
marks, despite the very different communication patterns in
each benchmark. In FT, the communication pattern is all-
to-all; in CG, it is one-to-one.

Note that on the SP2, the Fortran + MPI implementa-
tions cannot take advantage of all 176 user processors be-
cause their communication is written to work only with 2k

processors. While general implementations are possible with
MPI, they would require additional programmer effort that
would complicate the code. In contrast, due to the general-
ity of the remap operator and its implementation, the ZPL
versions can run on 176 processors (or any other number)
without modifying or recompiling the code.

Figure 7 shows the effect of individual remap optimiza-
tions on the transpose time. We disabled each of the map
saving, run length encoding, and direct sending optimiza-
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Figure 6: Graphs showing the total speedups and transpose times of class C of the NAS FT and CG
benchmarks across three platforms. The a and b rows show the FT benchmark; the c and d rows show the
CG benchmark. The a and c rows show the total speedup of the benchmark, while the b and d rows focus
only on the transpose portion of the benchmark and show execution time. The 1 column shows results on
Yukon, a 272 processor Cray T3E with 260 user processors. Each processor is a 450 MHz Alpha processor
with 256 MB of memory. The 2 column shows results on Icehawk, a 200 processor IBM SP with 176 user
processors. The SP2 is composed of 44 nodes with 2 GB of memory per node. Each node contains four 375
MHz power3 processors. The 3 column shows results on up to 1024 processors of Pink, a 2048 processor
cluster built with the LinuxBIOS/BProc technology. Pink is composed of 1024 nodes with 2 GB of memory
per node. Each node contains two 2.4 GHz Intel Xeon processors.



tions as well as all of the optimizations to see how each
affected performance on each platform. In addition, we dis-
abled a hand-coded, cache-blocking optimization of the lo-
cal copy in the Fortran + MPI transpose code of the FT
benchmark. This cache-blocking optimization, specific to
the actual indexing pattern used in NAS FT, accounts for
the ZPL overhead on all three platforms.

The effect of the remap optimizations differs significantly
across the different platforms. For example, map saving op-
timization is crucial for the cluster, but run length encoding
has little effect. On the T3E, run length encoding is almost
as crucial as map saving.

6. CONCLUSIONS
This paper describes an array remap operator that pro-

vides power for gathering and scattering arrays unmatched
by other languages. Unlike other parallel languages which
require attention to memory layout, processor boundaries,
and communication schedules, ZPL’s remap operator per-
mits the programmer to describe data movement only in
terms of global logical indices. Through optimizations such
as map saving, communication/computation overlap, sched-
ule compression, dead array reuse, and direct communica-
tion, the operator allows for an efficient parallel implemen-
tation which is comparable in performance to hand-tuned
Fortran and MPI.
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