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Abstract

This paper suggests that data parallelism is more general than previously thought and that integrating support for
task parallelism into a data parallel programming language is a mistake. With several proposed improvements, the
data parallel programming language ZPL is surprisingly versatile. The language and its power are illustrated by the
solution to several traditionally task parallel problems. In addition, limitations are discussed.

1 Introduction

For parallel programming, the coupling of machine and programming models has proven unwise: most scientists

today write parallel codes with a sequential language like Fortran and a message passing library like MPI. While

the Fortran + MPI combination provides great power, it also has serious drawbacks. By requiring programmers

to keep track of what each processor must do as well as what is to be accomplished overall, by introducing the

possibilities of deadlock and race conditions, by relying on an architectural concept like message passing rather than

a programming abstraction, Fortran + MPI unnecessarily burdens its users. The machine model of messages passing

between processors lacks the abstractions of a decent programming model, and this has hampered success.

Instead, success in high-performance scientific computing has stemmed from the development of faster machines

and their improved machine models. Flynn [13] classified such machine models by their number of instruction and

data streams. The Single Instruction Single Data (SISD) and Multiple Instruction Single Data (MISD) models apply

to the uniprocessors found in most workstations and the vector processors found in some supercomputers. From a

parallel programming standpoint, the Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data

(MIMD) models are more interesting. Both inspired rough parallel programming models: SIMD’s data parallelism

and MIMD’s task parallelism.

Task parallelism (also seen as control or process parallelism) refers to the parallel composition of sequential tasks

which interact through explicit synchronization and communication. It is highly general, but requires a heroic effort

from the programmer who must deal with deadlock and race conditions as a matter of course. Communicating Se-

quential Processes (CSP) [18] is an early notation for parallel programming that epitomizes task parallelism. In CSP,

individual sequential processes communicate with each other through input and output mechanisms. CSP is closely
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tied to the MIMD machine model of individual processors connected via a network accessed by input and output

ports. Notably, communication through updates to global variables is specifically disallowed, though shared memory

machine models have inspired this mechanism for task parallelism from time to time. Fortran + MPI is task parallel as

well; in this case, the mechanism for communication is a set of library routines for sending and receiving data.

In contrast, data parallelism refers to the sequential composition of parallel operations typically applied to part or

all of a large data structure. Notice the crucial distinction between the composition orders: data parallelism is “sequen-

tial of parallel” whereas task parallelism is “parallel of sequential.” Data parallelism is simpler for the programmer,

but lacks the generality of task parallelism. The same is true, of course, with respect to the SIMD and MIMD ma-

chine models. However, whereas task parallelism remains tied to the MIMD model, no longer is data parallelism even

related to the SIMD model.

The virtual disappearance of SIMD architectures and the widespread acceptance of MIMD clusters of workstations

does not necessitate a corresponding decline of data parallelism and rise of task parallelism. In demonstration of

data parallelism’s versatility, the focus for several recent data parallel languages is the MIMD machine model. For

example, the data parallel language ZPL is significantly more advanced than early languages that supported SIMD

data parallelism. In ZPL, parallel operations may be complex tasks more easily implemented in the MIMD model.

Indeed, data parallelism’s “operations” can no longer be interpreted literally; they are more like tasks than operations.

Bougé [3] suggests this shift from data parallelism as an offshoot of the SIMD machine model to a programming

model for the MIMD machine model is revolutionary:

Data parallelism can thus be thought as a “Paradigm Revolution” with respect to control [task] parallelism.
The essential aspect of this revolution is that the “PAR of SEQ” execution [machine] model is expressed
by a “SEQ of PAR” programming model! This clear distinction between programming and execution
models is the source of an enriched vision of programs.

Playfully referring to constructs in the decidedly task parallel transputer language OCCAM, Bougé abbreviates “se-

quential” and “parallel” when discussing the composition orders inherent to task and data parallelism.

Despite this revolution, data parallel languages still lack expressive power when compared to task parallel lan-

guages. Many powerful task parallel techniques are inexpressible in today’s data parallel programming languages.

The complimentary qualities, task parallelism’s generality and data parallelism’s simplicity, have naturally led to ef-

forts to integrate the two models in a single programming language. However, this paper suggests data parallelism is

more general than previously thought, and thus this integration is a mistake. With several proposed improvements, the

data parallel programming language ZPL is surprisingly versatile. Even though there remains a set of problems that

lack data parallel solutions, the set of problems for which data parallelism applies is growing. It is the view of this

paper that this trend will continue.

This paper is organized as follows. In the next section, we provide a brief overview of ZPL. In Section 3, we
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propose minor extensions to ZPL and demonstrate the resulting ZPL’s applicability to several traditionally task parallel

problems. In Section 4, we discuss related work. In Section 5, we conclude with a discussion on the limitations of ZPL.

Not every task parallel technique can be effectively exploited in ZPL, even with the extensions. However, we argue

that further development of ZPL’s data parallel capabilities is possible, and that integrating task parallel constructs into

ZPL, though easy, would add undesirable complexity.

2 ZPL Overview

ZPL is a portable, high-performance, data parallel array programming language for science and engineering computa-

tions. The current implementation is based on a compiler that translates a ZPL program to a C program with calls to

a user-specified communication library such as MPI. In this section, we provide only a brief introduction to ZPL. The

interested reader is referred to the literature [4, 20].

2.1 Replicated Data Structures

Replicated data structures, which include integers, records, and indexed arrays, are, as the name implies, replicated

on every processor. (Indexed arrays are similar to the standard arrays provided by many programming languages,

but are distinct from ZPL’s distributed data structure, parallel arrays.) By default, replicated data structures are kept

consistent on every processor. When different processors reach the same dynamic point in the program, the values

contained within replicated data structures are constrained to be the same. Thus, for example, in the code segment

config var
n : integer = 10;

var
i : integer;
a : array[1..n] of integer;

· · ·

for i := 1 to n do
a[i] := i;

end;

a[4] contains the value 4 on every processor when i ≥ 4 on every processor, but on any individual processor,

a[4] may not yet have been assigned the value 4 even if i ≥ 4 on another processor. Note the special declaration of

configuration variable n. Though constant during the execution of a program, configuration variables are not statically

known. The default value, 10 in the case of n, may be overridden at the start of execution. This is an important feature

of ZPL. Less information is required by the ZPL compiler than by compilers for other data parallel languages.

Unconstrained data structures are replicated data structures that may become inconsistent. The compiler ensures

constrained data remain consistent in the presence of unconstrained data. If u is an unconstrained integer, then the

following statements would result in a compile error:
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(1) i := u; (2) a[u] := i; (3)
for i := 1 to u do

a[i] := i;
end;

In the first statement, the potentially different values on different processors in unconstrained integer u could corrupt

the consistency of constrained integer i. In the second statement, u could index into different locations of constrained

array a on different processors, corrupting the array’s consistency. The third statement is a loop which exhibits

behavior called shattered control flow. Shattered control flow is control potentially executed differently by different

processors. In this case, each processor executes the assignment statement u times, and a different number of elements

in constrained array a could be assigned values on different processors. In general, constrained data may not be

written to within shattered control flow. Arguably, shattered control flow is similar to task parallelism because of the

parallel of sequential composition. It is not task parallelism because communication within shattered control flow is

disallowed.

The constrained vs. unconstrained distinction is unique to ZPL, and is worth comparing and contrasting against

the more familiar shared vs. private distinction associated with shared memory programming models as well as the

recently emerging Unified Parallel C (UPC) language [11, 12]. Both shared and constrained refer to singular values;

both private and unconstrained refer to per-processor values. Although shared data is often taken to exist on only

one processor whereas constrained data is taken to be replicated across the processors, this view of shared data does

not impede its replication for better performance [19, 21]. Rather, the major difference is that the programmer is not

restricted by the shared vs. private distinction. The programmer may assign private data to shared data. This results

in communication on distributed and distributed shared memory architectures, and synchronization becomes a major

factor. In the constrained programming model of ZPL, communication only results from a programmer’s use of several

communication-inducing operators. Unconstrained data may not be assigned to constrained data.

2.2 Distributed Data Structures

Central to ZPL’s parallelism is the region [6]. Regions are index sets with no associated data. They serve two funda-

mental purposes: to declare parallel arrays and to control parallel computations. In contrast to the indexed arrays of

Section 2.1, a parallel array is distributed across, rather than replicated on, the processors. In keeping with ZPL’s strict

rule that there be no communication without the use of several parallel operators which induce it, parallel arrays may

only be accessed through regions, i.e., they may not be indexed. Indexing allows for arbitrary access patterns which

necessitate communication. In contrast, regions, which must be factored out of expressions, only allow for regular

access patterns. The following code illustrates the two purposes of the region:
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region
BigR = [0..n+1, 0..n+1];
R = [1..n, 1..n];

var
A, B, C : [BigR] integer;

· · ·

[R] C := A + B;

We declare a named region BigR to contain the indices (i, j) for all i and j such that 0 ≤ i, j ≤ n + 1 and a named

region R to contain only the interior indices of BigR. Regions do not require names, and may be inlined directly in

the code. We use region BigR to declare the arrays A, B, and C and region R to assign the interior elements in C the

sum of the corresponding elements in A and B.

Four important properties of the region are illustrated by the above code. First, arrays declared over the same region

must be distributed across the processors in the same way. Since each of the arrays are declared over region BigR,

no communication is required. Had A, B, or C been declared over differently distributed regions, the computation

would result in an error. The statement would need to be rewritten using a communication-inducing parallel operator.

Second, only one region may apply to a statement of expression without a communication-inducing parallel operator.

Thus the arbitary access patterns defined by indexing are avoided. Third, the region is passive. It is activated by a

statement containing a parallel array, but otherwise does not apply. In the code

[R1] begin
[R2] begin

S2;
end;
S1;

end;

region R1 applies to statement S1; region R2 applies to statement S2. The region scope is dynamic, inherited through

procedure calls. Lastly, unlike its counterparts in many other data parallel languages, the region need not be statically

known by the compiler, though the semantics of mutable regions are as yet undefined. A nascent type theory clearly

differentiates the region type from the region.

2.3 Directions and the At Operator

The at operator, @, is the most basic parallel array operator having the potential to induce communication. It is based

on the concept of the direction. Directions are offset vectors used to refer to a shifted region of a parallel array. The

four cardinal directions, declared as

direction
north = [-1, 0];
east = [ 0, 1];
south = [ 1, 0];
west = [ 0, -1];
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allow a computation in which every non-border element in an array is assigned the average of its four neighbors:

[R] A := (A@north + A@east + A@south + A@west)/4;

If the arrays are block distributed, this common idiom requires communication along the edges of the blocks. With

MPI, programmers must treat these edges as special cases, and the code to do so is non-trivial and burdensome. This

is a key advantage to ZPL’s high-level global view of the computation.

2.4 The Reduction and Flood Operators

The reduction operator, op<<, reduces the values in a slice of an array (possibly the entire array) to either a lower-

rank slice of an array or a scalar. The associative and commutative operator, op, resolves collisions in the many-to-one

mapping, and may be one of several built-in operators, including min, max, and +, or may be user-defined [8]. If val

is a constrained integer, then

[BigR] val := min<< A;

computes the minimum value in A. The result is accessible to every processor. Partial reductions provide a convenient

way to reduce to a single processor. If uval is an unconstrained integer, then

[0, 0] uval := max<<[BigR] A;

results in only the processor that owns index (0, 0) obtaining the maximum value. Partial reductions require the

specification of two regions. They allow the programmer to reduce from and to slices of arrays. To calculate the sums

from the rows of array A and store the results in the first column of array B, a programmer writes

[0..n+1, 0] B := +<<[BigR] A;

The flood operator, >>, replicates the values in a slice of an array (possibly a single element) to a higher-rank

slice of an array (possibly the entire array). The semantics are nearly the reverse of the reduction operator. Since the

mapping is one-to-many, there is no operator to resolve collisions. As an example, the following line of code replicates

the value in A at index (0, 0) everywhere in array B:

[BigR] B := >>[0, 0] A;

2.5 Flooded and Grid Dimensions

Using the flood operator to replicate data within a parallel array is a powerful programming tool. However, the

replicated storage is wasteful. Flooded dimensions, *, let the programmer specify a minimal storage implementation
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at a high level. The elements in a flooded dimension of an array are constrained to have the same value. Each processor

owning a piece of that dimension need only store a single copy of the values in that dimension. As an example of

using flooded dimensions, consider code in which we multiply an n × 1 column matrix by a 1 × n row matrix. For

simplicity, we take the vectors from the first column and row of the n × n result, M. By declaring two temporary

arrays, each flooded in a different dimension, we may write the computation as

var
M : [R] double;
Col : [1..n, *] double;
Row : [*, 1..n] double;

· · ·

[1..n, *] Col := >>[1..n, 1] M;
[*, 1..n] Row := >>[1, 1..n] M;
[R] M := Col * Row;

Equivalently, we may write this computation without declaring the temporary arrays since the result of the flood

operator is a flooded array. The single line of code replacing the three above follows:

[R] M := >>[1..n, 1] M * >>[1, 1..n] M;

Related to the flooded dimension is the grid dimension, ::. In a grid dimension of an array, each processor stores

a different value. The storage requirements are identical to the flooded dimension, but the values are not required to

be consistent across the processors. An analogy between these dimension types and the sequential data types is as

follows: flooded is to grid as constrained is to unconstrained. There are important differences though. Regions are

naturally passive. Recall that if we open a region scope with begin and end, the region only applies to statements

that access parallel arrays. An array flooded in every dimension thus acts differently from a constrained scalar. Further,

such arrays do not necessarily exist on every processor, but rather just on those they are distributed across.

The grid dimension provides a powerful mechanism for local view computing. As an example, the Fast Fourier

Transform (FFT), due to its complex access patterns, is often computed locally. The common 2D FFT problem

involves calculating the FFT on the rows and the columns of an array in sequence. If we do not distribute the rows

of an array across the processors, then it is natural to transpose the array between FFT computations on the rows and

columns-turned-rows. Given a sequential procedure defined by

procedure fft(inout a : array[] of double; in n : integer);

we compute the FFT on each row of an array as follows:

[1..n, ::] fft(M, n);

Viewed over the grid dimension, a parallel array is cast to an indexed array. In a blocked distribution, the indexed

array corresponds to the local portion of the parallel array. For blocked-cyclic distributions, the semantics are as yet
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undefined. Note that in the above example, each second dimension in its entirety is local to some processor because

the second dimension is not distributed.

2.6 Grids and Domains

In ZPL, the distributions of arrays are specified with grids and domains. A grid specifies the processor layout. Its rank

must be statically known, but the number of processors may be specified at runtime. Thus

grid
G = [cp, rp];

declares a grid G with cp column processors and rp row processors where cp and rp are integers which may or may

not be statically known. As with the region, the semantics of a mutable grid are as yet undefined.

A domain, which must be associated with a grid, specifies the decomposition (blocked, cyclic, ...) and its bounding

box. The only decomposition currently supported is blocked. A domain’s rank must be statically known and, as with

the grid and region, the semantics of a mutable domain are as yet undefined. The following code creates a domain D

associated with grid G and having a blocked decomposition over the n × n index set:

domain
D : G = [blocked, blocked; 1..n, 1..n];

As domains are associated with grids, regions are associated with domains. For backward compatibility, but mostly

for simplicity, domains and grids do not have to be defined; in this case, per-rank defaults are substituted.

Grids and domains allow the programmer to solve a serious load balancing problem. In a simple program that

computes over an m × n and an n × m region, it would be a waste of processors to block distribute each array in the

same way if m and n differ substantially.

2.7 The Remap Operator

The remap operator is a powerful array operator providing mechanisms to support both gather and scatter. As an

illustration, consider transposing an n × n matrix M:

[R] M := M#[Index2, Index1];

The built-in arrays, Indexi, contain the values of the indices in the ith dimension of the currently active region. In

principle, they may be regarded as arrays in which every dimension other than the ith is flooded. In the implementation,

no storage is required.

The above code illustrates the gather operation, though the transpose may be written with the scatter operation as

well:
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[R] M#[Index2, Index1] := M;

For a more involved discussion of the remap operator, the reader is referred to the literature [9].

The remap operator is typically the best method for copying data between parallel arrays that are associated with

different grids or domains. The strict communication rules of ZPL do not allow a programmer to assign the data

directly. So if A and B are 2D parallel arrays associated with different domains, the programmer needs to write the

slightly obtuse

[R] A := B#[Index1, Index2];

in order to transfer data directly from B to A. This is a reasonable technique because the required communication can

be significant.

2.8 Indexed Arrays of Parallel Entities

Parallel arrays are associated with regions which in turn are associated with domains which in turn are associated with

grids. These four constructs are the foundations of ZPL’s data parallelism. However, they are not particularly special,

though some restrictions, e.g. they must be constrained, are necessary.

All four constructs may be declared like normal variables. Thus we allow for indexed arrays of grids, domains,

and regions, as well as parallel arrays, as in the following example:

var
Gs : array[1..k] of grid = [,];
Ds : array[1..k] of domain(Gs[]) = [1..index1*n, 1..index1*n];
Rs : array[1..k] of region(Ds[]) = [1..index1*n, 1..index1*n];
As : array[1..k] of [Rs[]] double;

This syntax replaces that of multi-regions referred to in the literature [5], though the functionality is similar. In the

above code, we declare k 2D grids which distribute the processors evenly in both dimensions. We declare k 2D

domains associated with the grids which block decompose index sets uniformly increasing in size. We declare k 2D

regions over the domains each the size of the domain’s bounding box. Finally, we declare k parallel arrays over the

regions.

3 Task Parallelism in ZPL

In this section, we introduce several data parallel constructs to the ZPL language that allow programmers to employ

techniques traditionally limited to task parallel languages. A simple data parallel approach often results in an inefficient

solution to a problem especially if the size of the data is limited. In this case a better approach may involve the
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application of data parallel tasks. In Section 3.1 we illustrate the concept of data parallel tasks with a simple problem

whose solution requires a minor extension to ZPL. In Section 3.2 we present a more complicated problem whose

solution requires a second extension. In Section 3.3 we present a third problem to illustrate the common idiom in

which data parallel tasks are pipelined. Finally, in Section 3.4, we demonstrate the power of ZPL by offering a

solution to a problem typically requiring an involved task parallel solution.

3.1 FFT Sum Example

This section introduces the contrived problem FFT Sum which illustrates the limitations of basic data parallel tech-

niques. We introduce a simple extension to ZPL’s support for grids to overcome these limitations.

3.1.1 Problem

The FFT Sum problem states the following: Given an n × n array of values, compute the Fast Fourier Transform

(FFT) on the rows and on the columns of the array, and take the element-wise sum of these results. Data parallelism

naturally applies to this problem. Figure 1(a) illustrates the ZPL solution. The grid and domain ensure the region

is distributed only in the first dimension. The FFT’s, with their complicated access patterns, may thus be efficiently

computed on the rows of the array. Transposing a copy of the array lets us compute the FFT on the columns turned

rows. Transposing the copy back, the solution may be obtained. The only communication involved in this algorithm

is in the two transposes.

This data parallel solution illustrates the limitations of many data parallel languages. If the number of processors

is greater than n, the excess processors are wasted. Increasing n is not always a feasible solution; the problem may

require the fixed size of n. Often these issues are ignored in the data parallel world, but problems sizes do not always

scale. In the case of this FFT example, the solution of distributing both dimensions is also poor. It is likely that the

complicated access pattern of the FFT would increase communication and total running time even if more processors

could be applied to the problem.

A better solution to increase parallelism is possible. The column and row FFT’s can be run concurrently. This is

equivalent to simultaneously executing lines 12 and 13 of the data parallel solution of Figure 1(a). Without extending

ZPL, this is difficult.

3.1.2 ZPL Solution

By specifying which processors are associated with a grid, as opposed to just how many processors, we can define

grids associated with disjoint sets of processors. In this way, we can achieve the desireable concurrency. This solution
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(a) Basic Solution (b) Extended Solution

1 grid
2 G = [ ,1];
3 domain
4 D : G = [1..n, 1..n];
5 region
6 R : D = [1..n, 1..n];
7 var
8 A1, A2 : [R] double;

9 procedure fftsum();
10 begin
11 [R] A2 := A1#[Index2, Index1];
12 [1..n, ::] fft(A1, n);
13 [1..n, ::] fft(A2, n);
14 [R] A1 += A2#[Index2, Index1];
15 end;

1 grid
2 G1 : [1..P/2; ,1];
3 G2 : [P/2+1..P; ,1];
4 domain
5 D1 : G1 = [1..n, 1..n];
6 D2 : G2 = [1..n, 1..n];
7 region
8 R1 : D1 = [1..n, 1..n];
9 R2 : D2 = [1..n, 1..n];
10 var
11 A1 : [R1] double;
12 A2 : [R2] double;

13 procedure fftsum();
14 begin
15 [R2] A2 := A1#[Index2, Index1];
16 [1..n, ::] fft(A1, n);
17 [1..n, ::] fft(A2, n);
18 [R1] A1 += A2#[Index2, Index1];
19 end;

Figure 1: Two ZPL solutions to the FFT Sum problem: (a) basic solution and (b) solution using the grid extension.
Assigning each grid a disjoint set of processors in the extended solution enables the concurrent execution of lines 16
and 17. P refers to the number of processors.

is illustrated in ZPL in Figure 1(b). In this solution, we use pairs of grids, domains, and regions. The first grid uses

the first half of the processors; the second grid, the second half.

In lines 15 and 18 of the code, all processors are involved. But in line 16, only the first half of the processors

compute; in line 17, only the second half of the processors. Lines 16 and 17 are thus run in parallel. The processors

not involved in the computation quickly fall through. We thus call this method of achieving more parallelism fall-

through data parallelism. It is a more general form of data parallelism than would be possible to achieve with many

data parallel languages. By calling the code segments in lines 16 and 17 “tasks,” this may be called a form of task

parallelism. It is limited, i.e. no communication is possible between the tasks.

3.1.3 Discussion

ZPL, therefore, supports what is traditionally considered task parallelism. This prompts the question: Is ZPL task

parallel? The answer is resoundingly negative. ZPL is data parallel through and through. Admittedly, it is short-

sighted to say that this computation is data parallel because we iterate over the two data arrays in parallel. Iterating

over data in parallel is not data parallelism. We must recall the definition of “sequential of parallel.” The execution of

line 16 is followed by the execution of line 17. The parallelism is achieved by half the processors quickly executing line

16, and the other half quickly executing line 17. Data parallelism is sufficient for this problem; so is task parallelism.

It is interesting, and worthy of mention, to try to determine which solution should be preferred if n is very large.

11



Unfortunately, this is not easy to do. Lines 12 and 13 of the basic solution may be slower than lines 16 and 17 of the

extended solution; the scaling is probably not linear especially if a more involved blocking scheme is used as in the

NAS FT benchmark [1]. The main difference, however, stems from the two transposes. In the data parallel solution,

it is easy to tell that the all-to-all communication pattern is identical in both transposes. The implementation uses this

information to optimize the second transpose resulting in significant time savings [9]. In the task parallel solution,

the transposes are not identical. However, in this latter solution the communication pattern is half-to-half rather than

all-to-all which is potentially faster. Also, if the functions are to be called multiple times, the optimization of the

same transpose executing again, would apply. Determining the better solution requires additional information about

the problem.

3.2 Jacobi Sum Example

The preceding problem is often referred to as an example of data parallel tasks which is itself seen as a limited, but

common, case of task parallelism. It is an especially simple case of data parallel tasks because there is no data parallel

communication within these tasks. In this section, we present a more complicated problem whose efficient solution

requires communication within the tasks. We introduce a second extension to ZPL which allows this solution.

3.2.1 Problem

The Jacobi computation is a simple data parallel computation. We are given an n × n array of values and a small

constant epsilon. We repeatedly replace each element in the array with the average of its four neighbors until the

maximum change seen by any element is less than epsilon. The admittedly contrived Jacobi Sum problem requires

the use of data parallel tasks. In this problem, we run two Jacobi computations on different arrays and calculate the

element-wise sum.

3.2.2 ZPL Solution

Figure 2 illustrates a solution to this problem in ZPL with a new construct. Before introducing the new construct, it is

worth discussing the problem that results without its use. Ignoring lines 29, 31, 32, and 34, Figure 2 is a typical ZPL

with the grid extension. Lines 30 and 33 call the Jacobi routine, but not in parallel. In the Jacobi function, half the

processors execute line 22; the other half quickly determine they can continue. However, every processor is involved

in the computation of line 23. The variable delta must be kept consistent on all the processors.

There are a number of ways to attempt to skirt this issue, but none work. Half the processors cannot skip the

entire loop. The problem, in essence, is the prohibition of communication within shattered control flow. Were delta

declared over a grid region, the repeat control structure would be shattered. A limited form of communication in
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1 grid
2 G1 : [1..P/2; , ];
3 G2 : [P/2+1..P; , ];
4 domain
5 D1 : G1 = [0..n+1, 0..n+1];
6 D2 : G2 = [0..n+1, 0..n+1];
7 region
8 BigR1 : D1 = [0..n+1, 0..n+1]; R1 : D1 = [1..n, 1..n];
10 BigR2 : D2 = [0..n+1, 0..n+1]; R2 : D2 = [1..n, 1..n];
12 var
13 A1 : [BigR1] double; T1 : [R1] double;
15 A2 : [BigR2] double; T2 : [R2] double;

17 procedure jacobi(inout A, T : [,] double);
18 var
19 delta : double;
20 begin
21 repeat
22 T := (A@north + A@east + A@south + A@west) / 4;
23 delta := max<< fabs(T - A);
24 A := T;
25 until delta < epsilon;
26 end;

27 procedure jacobisum();
28 begin
29 on G1 begin
30 [R1] jacobi(A1, T1);
31 end;
32 on G2 begin
33 [R2] jacobi(A2, T2);
34 end;
35 [R1] A1 += A2#[Index1, Index2];
36 end;

Figure 2: A ZPL solution to the Jacobi Sum problem. The on construct allows the concurrent execution of lines 30
and 33.

shattered control flow is desireable and would solve this problem. In general, however, it is undesireable, and would

result in a complicated, potentially slow implementation in which the performance of a code is difficult to foretell. The

on construct balances these needs. Its purpose is to open up a grid dependent scope. Its general form is given by

on (grid) begin
· · ·

end;

Within the construct’s dynamic scope, data distributed over a grid other than the grid specified may not be accessed.

In addition, constrained variables may not be written, unless it too is declared in the dynamic scope.

3.2.3 Discussion

The goal of the on construct is to allow processors not owning a portion of the specified grid to skip past code, thereby

permitting more concurrency. Note that on constructs may not be nested; this would break the rule of only allowing
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access to the specified grid within the construct.

The on construct is useful for communicating not only with the compiler and machine, but also with the program-

mer. It signals the possible concurrent execution of distinct code segments. For example, we might use the construct

in our solution to the FFT Sum problem in Figure 1(b) even though it is not necessary. It could be used around lines

16 and 17 to indicate the concurrency.

3.3 2D FFT Example

The example described in this section is adapted from the CMU task parallel program suite [10] and based on the NAS

FT benchmark [1].

3.3.1 Problem

The 2D FFT problem states the following: Given a number of iterations, iters, and a series of n × n arrays, we

compute the FFT first on the rows, and then on the columns, of the arrays which are generated over a period of time.

As with the previous examples, the problem size, n, may be fixed; thus parallelizing only with respect to the data is

insufficient. The difference between this example and the FFT sum example from Section 3.1 is non-trivial. In the

FFT sum case, two tasks were conceptually spawned and the program continued when each finished. In this example,

the tasks must be pipelined. As will be seen, ZPL can handle both of these cases easily. Again, we do not use the on

construct, though it may be used by the programmer as an informative signal of the increased concurrency.

3.3.2 ZPL Solution 1

Figure 3 illustrates a pipelined solution in ZPL. Note the similarity to the declarations in the task parallel solution to

the FFT sum example. The grids, domains, and regions are identical. In addition to the A1 and A2 arrays, the A0

array is declared over region R1. As in the NAS FT benchmark, the A0 array is modified each iteration, and the new

modification is used as the next array. In the CMU benchmark suite, the arrays are streamed in from an outside source.

The main computation takes place between lines 17 and 23. Lines 18 to 20 only require the first half of the proces-

sors; the other half quickly skip over this computation. In line 21, the first half of the processors must communicate

the current values in the array, after the row FFT’s, to the second half of the processors. Then, in line 22, the second

half of the processors compute the column FFT’s. Not shown, the result of the column FFT’s is analyzed or passed

off to other processors to analyze. When the second half of processors start to compute the column FFT’s, the first set

quickly move ahead to work on the next iteration. Thus full concurrency is achieved after an initial warmup. If n is

only 64, then we can effectively use up to 128 processors. However, even more concurrency is exploitable.
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1 grid
2 G1 : [1..P/2; ,1];
3 G2 : [P/2+1..P; ,1];
4 domain
5 D1 : G1 = [1..n, 1..n];
6 D2 : G2 = [1..n, 1..n];
7 region
8 R1 : D1 = [1..n, 1..n];
9 R2 : D2 = [1..n, 1..n];
10 var
11 A0, A1 : [R1] double;
12 A2 : [R2] double;

13 procedure fft2d();
14 var
15 i : integer;
16 [R1] begin
17 for i := 1 to iters do
18 evolve(A0);
19 A1 := A0;
20 [1..n, ::] fft(A1, n);
21 [R2] A2 := A1#[Index2, Index1];
22 [1..n, ::] fft(A2, n);
23 end;
24 end;

Figure 3: A ZPL solution to the 2D FFT problem in which the iterations are pipelined. After the first iteration, lines
20 and 22 execute concurrently.

3.3.3 ZPL Solution 2

Taking more advantage of the independence between iterations, we implement this example with a group of pipelines,

rather than just one. Figure 4 illustrates this approach. In this code, we revert to the generalized form of declaring

grids, domains, and regions since we want to declare indexed arrays of such entities. The variable pipes refers to the

number of pipelines, and need not be statically known. In lines 2 and 3, the processors are carefully divided between

the pipelines and between the stages of each pipeline. In lines 4-10, the domains, regions, and arrays are allocated

with respect to these grids similarly to lines 4-12 of Figure 3.

Lines 15-22 contain the main computation. Each iteration is assigned to the pipelines in a round-robin manner.

The pipelines behave in the same way as described in our discussion of the pipelined implementation. Note that we

now must use the remap operator to assign A0 to the proper element in array A1 because A1 may not be on the same

grid. In a different implementation, A0 may be allocated to its own grid or replicated on every processor. Depending

on the size of n, the time taken by evolve, and other problem-dependent factors, either approach may be preferred.
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1 var
2 G1 : array[1..pipes] of grid = [(index1-1)*(P/pipes)+1..index1*P/pipes/2; ,1];
3 G2 : array[1..pipes] of grid = [index1*P/pipes/2+1..index1*P/pipes; ,1];
4 D1 : array[1..pipes] of domain(G1[]) = [1..n, 1..n];
5 D2 : array[1..pipes] of domain(G2[]) = [1..n, 1..n];
6 R1 : array[1..pipes] of region(D1[]) = [1..n, 1..n];
7 R2 : array[1..pipes] of region(D2[]) = [1..n, 1..n];
8 A0 : [R1[1]] double;
9 A1 : array[1..pipes] of [R1[]] double;
10 A2 : array[1..pipes] of [R2[]] double;

11 procedure fft2d();
12 var
13 i, p : integer;
14 begin
15 for i := 1 to iters do
16 p := (i-1) % pipes + 1;
17 [R1[1]] evolve(A0);
18 [R1[p]] A1[p] := A0#[Index1, Index2];
19 [1..n, ::] fft(A1[p], n);
20 [R[p]] A2[p] := A1[p]#[Index2, Index1];
21 [1..n, ::] fft(A2[p], n);
22 end;
23 end;

Figure 4: A ZPL solution to the 2D FFT problem in which the iterations are executed in multiple independent pipelines.
Substantial concurrency is achieved with the round-robin (line 16) application of tasks to pipelines.

3.3.4 Discussion

Coarse-grained pipelining is a fundamental technique for achieving greater concurrency in parallel programs. ZPL’s

support for pipelining is notable for its versatility, but also because no additional constructs are necessary. The remap

operator serves the technique well.

3.4 Fock Matrix Construction

The Fock matrix is essential to ab initio quantum chemistry: the use of computer programs to compute the fundamental

properties of atoms and molecules. The complicated access patterns make the Fock matrix construction algorithm

difficult for many data parallel languages to handle [14]. In this section, we discuss a preliminary examination of this

algorithm.

3.4.1 Problem

A simplified algorithm similar to those used to construct the Fock matrix is given by the following quadruply nested

loop:
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for i := 1 to n do
for j := 1 to n do

for k := 1 to n do
for l := 1 to n do

v := compute integral(i,j,k,l);
f[i,j] += v*d[k,l];
f[k,l] += v*d[i,j];
f[i,k] -= .5*v*d[j,l];
f[i,l] -= .5*v*d[j,k];
f[j,k] -= .5*v*d[i,l];
f[j,l] -= .5*v*d[i,k];

end;
end;

end;
end;

The write-only array f is the Fock matrix; the read-only array d is the density matrix. One major simplification is seen

in the loop bounds. Typically the j-loop’s upper bound is i. Likewise, the k and l loops may also be less than n. We

ignore such important optimization to simplify our discussion.

The problem encountered by many data parallel languages stems from the array access patterns. As a result,

implementations have relied on task parallel constructs. Processors asynchronously make requests to and answer

requests from one another for data. In many implementations, the Fock and density matrices are restricted to be

sufficiently small so as to allow for full replication. This severely limits the size of the problem that can be handled,

but simplifies programming.

3.4.2 ZPL Solution

Figure 5(a) illustrates a ZPL implementation of the quadrupally nested loop in which the Fock matrix, F, and the

density matrix, D, are distributed. In this code, the k and l loops are parallelized, though this is an arbitrary choice.

Lines 15 to 20 correspond exactly to the 6 lines of code in the sequential solution. Lines 15 and 16 are straightforward,

the remaining four lines are more involved. For these latter statements, we use the following technique: we transpose

the source array thus allowing us to flood and reduce the same dimension. This powerful technique lets us block the

computation at runtime.

3.4.3 Discussion

This example illustrates that, given a good set of constructs and techniques, data parallelism is highly-general. A data

parallel programmer, armed with the operators used here and the knowledge of general techniques like “transpose to

flood and reduce,” stands a good chance of quickly writing a high-performance solution to a complex problem. The

task parallel programmer may run into problems with deadlocks and race conditions or, due to the generality of the

methods, may end up with less efficient solution. The many small messages required by a task parallel solution involv-
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1 region
2 R = [1..n, 1..n];
3 var
4 F, D : [R] double;

5 procedure fock();
6 var
7 i, j : integer;
8 DT, V, VT : [R] double;
9 [R] begin
10 DT := D#[Index2, Index1];
11 for i := 1 to n do
12 for j := 1 to n do
13 V := compute integral(i, j, Index1, Index2);
14 VT := V#[Index2, Index1];
15 [i, j] F += +<<[R] (V * D);
16 F += V * >>[i, j] D;
17 [i, 1..n] F -= .5 * +<<[R] (VT * >>[1..n, j] DT);
18 [j, 1..n] F -= .5 * +<<[R] (V * >>[1..n, i] DT);
19 [i, 1..n] F -= .5 * +<<[R] (V * >>[1..n, j] DT);
20 [j, 1..n] F -= .5 * +<<[R] (VT * >>[1..n, i] DT);
21 end;
22 end;
23 end;

Figure 5: A ZPL implementation of the simplified Fock matrix construction algorithm. A good communication to
computation ratio suggests this solution is efficient.

ing server and worker threads will likely lead to performance bottlenecks on today’s machines where the optimized

case involves fewer large messages.

4 Related Work

Typically data parallel languages rely on sophisticated compilers while task parallel languages use only standard

compilers. The opposite is more often the case for the runtime: task parallel languages employ sophisticated runtimes

while data parallel languages use more standard runtimes. In addition, data parallel languages usually provide a global

view of the computation; task parallel languages, a local view. Such differences are more than coincidence but less

than necessary. They stem from task parallelism’s generality and data parallelism’s simplicity.

When the differences apply, integrating task and data parallelism into a single language is not only worthwhile, but

also difficult. Adding more advanced runtime support to HPF systems would allow for more dynamic behaviors, but

this could cost the compiler and result in worse performance. That is why many HPF systems require static knowledge

of the problem size and processor grid.

The differences do not apply to ZPL. ZPL uses a relatively small compiler which, for example, is not responsible

for parallelizing loops with or without programmer directives. ZPL has a sophisticated runtime allowing problem

sizes and grids to change after compilation. In addition, ZPL provides a global view of the computation, but also lets
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programmers take a local view of the problem.

In this case, it is useful to make the distinction between integrating task parallelism and extending data parallelism.

The approach of extending data parallelism offers the advantage of retaining simplicity, by not permitting the parallel

composition of sequential tasks, while still providing substantial generality. Despite this distinction, the work dis-

cussed in this paper is similar to the body of work done on integrating task and data parallelism. As Bal and Haines [2]

point out in their overview of the topic, the integration efforts have always been incomplete. The end results favor the

form of parallelism supported by their base language.

Like the work in this paper, Gross et. al. [16] shy away from fully integrating task and data parallelism. Starting

with an implementation of HPF called the Fx compiler, they propose adding task parallel directives to compliment

the data parallel directives that form traditional HPF. As a result, task parallelism is not fully supported and is static.

The compiler is fully responsible for assigning different subroutines to different groups of processors. Subhlok and

Yang [21] continued work on the Fx compiler, removing static constraints and loosening the stranglehold of the

compiler.

A notable similarity between the work on Fx and our work is that neither language attempts to provide mechanisms

for communication between tasks. The “sequential of parallel” composition order is maintained. Chapman et. al. [7]

present the Opus language which achieves task parallelism similarly, though limits it to subroutines. They provide a

mechanism, called shared data abstraction, for exchanging data between tasks. It allows for full task parallelism, but

at the cost of program complexity.

An alternative approach to integrating task and data parallelism is through a coordination language. Foster et. al. [15]

define a coordination language for HPF using a subset of MPI. This approach benefits from its simplicity; HPF can re-

main unchanged. However, the disadvantages are substantial. There is no clear programming model, and the compiler

is limited.

The advantage of data parallelism’s simplicity is not lost on developers of task parallel languages, and some work

has been done to integrate data parallelism into a task parallel language. Hassen and Bal [17] added data parallel

constructs to Orca. The data parallelism, though, is very limited. It is typically restricted to a single array, unless

multiple arrays are stored in the same object. In addition, the “owner computes” rule is used exclusively.

5 Conclusions

This paper proposed extensions to the ZPL language which enable the expression of techniques traditionally limited

to task parallel languages. The resulting language is significantly more general, but some limitations remain. For

example, asynchronous producer-consumer relationships for enhanced load balancing are still difficult to express.
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Recall the 2D FFT solution of Figure 4 in which we map a series of iterations of a computation to multiple independent

pipelines in a round-robin manner. Now suppose that the time needed for the computation to proceed through a pipeline

was dependent on the data. Then the round-robin application of tasks to pipelines would result in a possibly inefficient

use of the resources. Instead, it would be worthwhile to deal the computations only to idle pipelines. A task parallel

language can handle this situation well. ZPL, even with the proposed extensions, cannot.

The set of parallel programming techniques expressible with data parallel languages is growing. The question that

needs to be addressed in the future is as follows: Does the sequential of parallel composition order pose fundamental

limitations to data parallel programming or can data parallelism rival the expressibility of task parallelism while

retaining a simpler programming model? The versatility of ZPL’s simple constructs suggests that the latter may be the

case. It just may be possible to reword the well-known phrase oft-touted by researchers of artificial intelligence:

It’s task parallelism until it works!
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