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Abstract. Multi-layer perceptrons (MLPs) have been widely used in classifica-
tion and regression task. How to improve the training speed of MLPs has been 
an interesting field of research. Instead of the classical method, we try to train 
MLPs by a MiniMin model which can ensure that the weights of the last layer 
are optimal at each step. Significant improvement on training speed has been 
made using our method for several big benchmark data sets. 

1   Introduction 

In many important application areas such as pattern recognition, signal processing and 
control, it is needed to approximate an unknown nonlinear mapping through learning 
from examples. Multi-layer perceptrons (MLPs) [1] have been widely used to tackle 
this task, since they are shown to be universal function approximators [2].  

Classical backpropagation (BP) algorithm [3] is usually quite slow due to nonlinear 
of MLPs and global property of sigmoid neuron. Many efforts have been made to 
improve training time. In 1990, Battiti and Masulli [4] used quasi-Newton algorithm 
(BFGS) to speedup MLPs. In 1994, Hagan and Menhaj [5] improved training time of 
MLPs by Levenberg -Marquardt algorithm where the Jacobian matrix is computed 
through a standard backpropagation technique that is much less complex than com-
puting the Hessian matrix. In 1993, Moller [5] proposed a quite effective algorithm 
named scaled conjugate gradient (SCG) for MLPs. SCG is fully automated including 
no user dependent parameters and avoiding a time consuming line-search. Demuth’s 
test report [7] also shows that SCG performs well over a wide variety of problems, 
particularly for networks with a large number of weights. For a good introduction of 
these algorithms, reader can refer to [8-9]. 

Our focus will be on two-Layer perceptrons with sigmoidal hidden units and a lin-
ear output unit. Our fundamental idea is that the weights of MLPs can be computed 
by a MiniMin model named MM-MLPs. This novel model allows the weights of the 
last Layer to be analytically calculated by linear equation systems. In other words, 
MM-MLPs can ensure that the weights of the last Layer are optimal at each step. An 
empirical study on four big data sets shows that MM-MLP yields a significant 
speedup relative to MLPs with the same training algorithm (in this paper, SCG is 
used). The speedup depends on the learning task. Experimental results seem to sup-
port that MM-MLPs usually obtain a bigger speedup for regression than for classifica-
tion task. 
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2   MiniMin Multi-layer Perceptrons 

We consider the training error to be the sum over output units of the squared differ-
ence between the desired output and actual output. Without loss of generality, we 
ignore the bias terms of network for convenience of formulation. In the classical 
MLPs, the weights is given by minimizing the following objective function 
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as BP result in poor performance in this model. To ease this problem, we try to opti-
mize the weights of MLPs by MiniMin model 
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By some mathematical tricks, we can get the analytical solution of the inner objec-
tive function. The inner objective function can be written as 
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Let the derivative of f  with respect to s  be zeros, we can compute ( )sopt  by 
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where ( )sopt  is the s-th column of matrix opt . 

Substituting Eq. (4) into Eq. (3), we have 
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Thus Eq. (2) is simplified into 
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The derivative of E  with respect to the weights ijW  can be computed by theorem 1. 

Theorem 1 
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where  denotes Hadamard product, 
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column of matrix ∆H
It is interesting to compare the derivative of E  and the derivative of 'E . 

 



 Training Multi-layer Perceptrons Using MiniMin Approach 911 

The derivative of 'E  with respect to ijW  is
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Because ijW  only appears in the j-th column of H , Eq. (8) is further simplified as 
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From Eq. (7) and Eq. (10), we can see that if replacing s  of Eq. (10) with opt ,

we can get Eq. (7). In MM-MLPs, opt  is optimal, which possible explains why our 

model usually has higher convergence rate. 
According to Eq. (7), the computational complexity for the derivative of each 

weight is ( )O cl , where l  is the size of training samples. To obtain the gradient vec-

tor, we need to do it ( )Ne n×  times, which incurs a computational cost of 

( )O Ne ncl× , where Ne  is the size of hidden units. This cost seems too large. A 

better solution is based on the following theorem. 

Theorem 2 
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A straightforward corollary of theorem 2 is that the gradient vector can be com-
puted at ( )O Ne nl cnl× +  cost. Similar conclusion holds for MLPs model. Another 

time-consuming operation is computing opt  whose cost is ( )3 2O Ne Ne l+ . Thus the 

computational complexity of MM-MLPs at each step is 

( )3 2O Ne nl cnl Ne Ne l× + + + . The computational complexity of MLPs at each step is 

( )O Ne nl cnl× + .

As a result, we can derive that if Ne m< , then MM-MLPs and MLPs have the 
same computational complexity at each step. Since many practical problems satisfy 
this condition ( Ne m< ), our model should find wide applications. 

3   Empirical Study 

In order to know how well MM-MLPs work, we compare it with MLPs on two big 
data sets, each of which contains several thousand samples. Classification problems 
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are from Statlog [10] and regression problems are from Delve [11]. These data sets 
have been extensively used in testing the performance of diversified kinds of learning 
algorithms. Here, SCG algorithm is used to train networks. All the experiments are 
run on a personal computer with 2.4 GHz P4 processors, 2 GB memory and Windows 
XP operation system. 

To avoid that the features with large magnitude dominate the output, all the train-
ing data are scaled in [-1, 1], then the test data are adjusted using the same linear 

transformation. The input weights are randomly initialized in the range [
1

m
− ,

1

m
]

and hidden-to-output weights in the range [
1

Ne
− ,

1

Ne
]. The number of hidden 

units depends on the task at hand; hence there is no foolproof method for setting the 
number of hidden units before training. In our experiments, the number of hidden 
units is determined by the 10-fold cross validation method. 

The aim with this test is to compare the performance of MM-MLPs and MLPs on 
the classification problems. This task is to recognize the splice-junction gene se-
quences. This data set consists of 2000 training samples and 1186 test samples, 180 
attributes of each sample. Three-layer network with five hidden units is used for this 
task. The convergence criterion is set to 0.030, 0.020, 0.010, 0.008, 0.006, 0.004 and 
0.002. MM-MLPs and MLPs are tested on 10 random initial weights for each criterion.  

From Table 1, we can see that MM-MLPs obtain the speedup range from 2 to 5 
under the seven different convergence criterions. From Fig. 1, we can see that MM-
MLPs reach the best test error with significantly fewer epochs. 

Table 1. Epochs and training time of MM-MLPs and MLPs under the different criterion on 
Dna data set 

MM-MLPs MLPs 
Criterion Epoch Time Epoch Time 

0.030 11.200 1.482 22.600 2.833 
0.020 17.200 2.217 30.700 3.803 
0.010 28.900 3.659 53.900 6.609 
0.008 32.500 4.249 60.200 7.486 
0.006 38.000 4.861 102.000 12.655 
0.004 55.000 6.847 229.400 29.788 
0.002 130.200 15.541 472.400 60.971 

The aim with this test is to compare the performance of MM-MLPs and MLPs on 
the regression problem. This task is to predict portion of time that CPUs run in user 
mode. This data set consists of 8192 samples, 21 attributes of each. Three-layer net-
work with fifteen hidden units is used for this task. The convergence criterion is set to 
0.000200, 0.00100, 0.00090, 0.00080, 0.00070, 0.00065, 0.00060 and 0.00055. MM-
MLPs and MLPs are tested on 10 random initial weights for each criterion.  
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From Table 2, we can see that MM-MLPs obtain the speedup range from 6 to 12 
under the seven different convergence criterions. From Fig. 2, we can see that MM-
MLPs reach the best 10-fold cross validation error with significantly fewer epochs. 

Fig. 1. Variation of the average training errors with epochs (left) and variation of average test 
errors with epochs (right) on Dna data set. “*” denotes the best test error. 

Table 2. Epochs and training times of MM-MLPs and MLPs under the different criterion on 
Computer Activity data set 

MM-MLP MLP 
Criterion Epoch Time Epoch Time 

0.00200/19.6020 8.400 7.361 73.300 50.055 
0.00100/9.8010 14.000 11.891 120.700 85.627 
0.00090/8.8209 17.000 14.014 154.500 108.704 
0.00080/7.8408 20.700 17.111 229.000 161.663 
0.00070/6.8607 28.900 23.909 379.300 274.800 
0.00065/6.3706 49.700 40.422 647.900 470.228 
0.00060/5.8806 79.500 64.567 1156.800 835.763 
0.00055/5.3906 306.200 246.749 2027.900 1483.817 

Fig. 2. Variation of average training errors with epochs (left) and variation of 10-fold cross 
validation errors with epochs(right) on Computer Activity data set. “*” denotes the best 10-fold 
cross validation error. 
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4   Conclusion 

In this paper, MiniMin model is presented to train MLPs, which can ensure that the 
weights of the last layer are optimal at each step. The empirical comparisons on the 
four big benchmark data sets show that our method obtains a significant speedup 
relative to the classical formulation. 
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