
Y. Hao et al. (Eds.): CIS 2005, Part I, LNAI 3801, pp. 909 – 914, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Training Multi-layer Perceptrons Using MiniMin
Approach

Liefeng Bo, Ling Wang, and Licheng Jiao

Institute of Intelligent Information Processing,
Xidian University, Xi’an 710071, China
{blf0218, wliiip}@163.com

Abstract. Multi-layer perceptrons (MLPs) have been widely used in classifica-
tion and regression task. How to improve the training speed of MLPs has been
an interesting field of research. Instead of the classical method, we try to train
MLPs by a MiniMin model which can ensure that the weights of the last layer
are optimal at each step. Significant improvement on training speed has been
made using our method for several big benchmark data sets.

1 Introduction

In many important application areas such as pattern recognition, signal processing and
control, it is needed to approximate an unknown nonlinear mapping through learning
from examples. Multi-layer perceptrons (MLPs) [1] have been widely used to tackle
this task, since they are shown to be universal function approximators [2].

Classical backpropagation (BP) algorithm [3] is usually quite slow due to nonlinear
of MLPs and global property of sigmoid neuron. Many efforts have been made to
improve training time. In 1990, Battiti and Masulli [4] used quasi-Newton algorithm
(BFGS) to speedup MLPs. In 1994, Hagan and Menhaj [5] improved training time of
MLPs by Levenberg -Marquardt algorithm where the Jacobian matrix is computed
through a standard backpropagation technique that is much less complex than com-
puting the Hessian matrix. In 1993, Moller [5] proposed a quite effective algorithm
named scaled conjugate gradient (SCG) for MLPs. SCG is fully automated including
no user dependent parameters and avoiding a time consuming line-search. Demuth’s
test report [7] also shows that SCG performs well over a wide variety of problems,
particularly for networks with a large number of weights. For a good introduction of
these algorithms, reader can refer to [8-9].

Our focus will be on two-Layer perceptrons with sigmoidal hidden units and a lin-
ear output unit. Our fundamental idea is that the weights of MLPs can be computed
by a MiniMin model named MM-MLPs. This novel model allows the weights of the
last Layer to be analytically calculated by linear equation systems. In other words,
MM-MLPs can ensure that the weights of the last Layer are optimal at each step. An
empirical study on four big data sets shows that MM-MLP yields a significant
speedup relative to MLPs with the same training algorithm (in this paper, SCG is
used). The speedup depends on the learning task. Experimental results seem to sup-
port that MM-MLPs usually obtain a bigger speedup for regression than for classifica-
tion task.

910 L. Bo, L. Wang, and L. Jiao

2 MiniMin Multi-layer Perceptrons

We consider the training error to be the sum over output units of the squared differ-
ence between the desired output and actual output. Without loss of generality, we
ignore the bias terms of network for convenience of formulation. In the classical
MLPs, the weights is given by minimizing the following objective function

() ()'

,
1

min
c Ts s s s

s

E
=

= − −
W

Y H Y H . (1)

where sY and s denote the s-th column of matrix Y and �respectively, and

1

n

ij tj it
t

wφ
=

=H X . Due to nonlinear and compact structure, many algorithms such

as BP result in poor performance in this model. To ease this problem, we try to opti-
mize the weights of MLPs by MiniMin model

() ()
1

min min
c Ts s s s

s

E f
=

= = − −
W

Y H Y H . (2)

By some mathematical tricks, we can get the analytical solution of the inner objec-
tive function. The inner objective function can be written as

 () () ()()
1

min 2
c T T Ts T s s T s s s

s

E
=

= − +H H H Y Y Y . (3)

Let the derivative of f with respect to s be zeros, we can compute ()sopt by

() () 1sopt T T s−
= H H H Y (4)

where ()sopt is the s-th column of matrix opt .

Substituting Eq. (4) into Eq. (3), we have

() () ()()1

1

c T Ts T T s s s

s

E
−

=

= − +Y H H H H Y Y Y . (5)

Thus Eq. (2) is simplified into

() () ()()1

1

min
c T Ts T T s s s

s

E
−

=

= − +
W

Y H H H H Y Y Y . (6)

The derivative of E with respect to the weights ijW can be computed by theorem 1.

Theorem 1

()() ()()
1

2
c Tss opt opt j i

js
tij

E

=

∂ = − ∆
∂

Y H H X
W

 (7)

where denotes Hadamard product,
1

n

ij tj it
t

wφ
=

∆ = ∆H X and j∆H is the j-th

column of matrix ∆H
It is interesting to compare the derivative of E and the derivative of 'E .

 Training Multi-layer Perceptrons Using MiniMin Approach 911

The derivative of 'E with respect to ijW is

()
'

1

2
c Ts s s

sij ij

E

=

∂ ∂= − −
∂ ∂

H
Y H

W W
. (8)

Because ijW only appears in the j-th column of H , Eq. (8) is further simplified as

()
'

1

2
jc Ts s

js
sij ij

E

=

∂ ∂= − −
∂ ∂

H
Y H

W W
. (9)

In terms of
j

j i

ij

∂ = ∆
∂

H
H X

W
, Eq. (9) can be transformed into

() ()()'

1

2
c Ts s j i

js
sij

E

=

∂ = − ∆
∂

H Y H X
W

. (10)

From Eq. (7) and Eq. (10), we can see that if replacing s of Eq. (10) with opt ,

we can get Eq. (7). In MM-MLPs, opt is optimal, which possible explains why our

model usually has higher convergence rate.
According to Eq. (7), the computational complexity for the derivative of each

weight is ()O cl , where l is the size of training samples. To obtain the gradient vec-

tor, we need to do it ()Ne n× times, which incurs a computational cost of

()O Ne ncl× , where Ne is the size of hidden units. This cost seems too large. A

better solution is based on the following theorem.

Theorem 2

()()()()2
TT optE∂ = ∆ −

∂
X H H Y

W
 (11)

A straightforward corollary of theorem 2 is that the gradient vector can be com-
puted at ()O Ne nl cnl× + cost. Similar conclusion holds for MLPs model. Another

time-consuming operation is computing opt whose cost is ()3 2O Ne Ne l+ . Thus the

computational complexity of MM-MLPs at each step is

()3 2O Ne nl cnl Ne Ne l× + + + . The computational complexity of MLPs at each step is

()O Ne nl cnl× + .

As a result, we can derive that if Ne m< , then MM-MLPs and MLPs have the
same computational complexity at each step. Since many practical problems satisfy
this condition (Ne m<), our model should find wide applications.

3 Empirical Study

In order to know how well MM-MLPs work, we compare it with MLPs on two big
data sets, each of which contains several thousand samples. Classification problems

912 L. Bo, L. Wang, and L. Jiao

are from Statlog [10] and regression problems are from Delve [11]. These data sets
have been extensively used in testing the performance of diversified kinds of learning
algorithms. Here, SCG algorithm is used to train networks. All the experiments are
run on a personal computer with 2.4 GHz P4 processors, 2 GB memory and Windows
XP operation system.

To avoid that the features with large magnitude dominate the output, all the train-
ing data are scaled in [-1, 1], then the test data are adjusted using the same linear

transformation. The input weights are randomly initialized in the range [
1

m
− ,

1

m
]

and hidden-to-output weights in the range [
1

Ne
− ,

1

Ne
]. The number of hidden

units depends on the task at hand; hence there is no foolproof method for setting the
number of hidden units before training. In our experiments, the number of hidden
units is determined by the 10-fold cross validation method.

The aim with this test is to compare the performance of MM-MLPs and MLPs on
the classification problems. This task is to recognize the splice-junction gene se-
quences. This data set consists of 2000 training samples and 1186 test samples, 180
attributes of each sample. Three-layer network with five hidden units is used for this
task. The convergence criterion is set to 0.030, 0.020, 0.010, 0.008, 0.006, 0.004 and
0.002. MM-MLPs and MLPs are tested on 10 random initial weights for each criterion.

From Table 1, we can see that MM-MLPs obtain the speedup range from 2 to 5
under the seven different convergence criterions. From Fig. 1, we can see that MM-
MLPs reach the best test error with significantly fewer epochs.

Table 1. Epochs and training time of MM-MLPs and MLPs under the different criterion on
Dna data set

MM-MLPs MLPs
Criterion Epoch Time Epoch Time

0.030 11.200 1.482 22.600 2.833
0.020 17.200 2.217 30.700 3.803
0.010 28.900 3.659 53.900 6.609
0.008 32.500 4.249 60.200 7.486
0.006 38.000 4.861 102.000 12.655
0.004 55.000 6.847 229.400 29.788
0.002 130.200 15.541 472.400 60.971

The aim with this test is to compare the performance of MM-MLPs and MLPs on
the regression problem. This task is to predict portion of time that CPUs run in user
mode. This data set consists of 8192 samples, 21 attributes of each. Three-layer net-
work with fifteen hidden units is used for this task. The convergence criterion is set to
0.000200, 0.00100, 0.00090, 0.00080, 0.00070, 0.00065, 0.00060 and 0.00055. MM-
MLPs and MLPs are tested on 10 random initial weights for each criterion.

 Training Multi-layer Perceptrons Using MiniMin Approach 913

From Table 2, we can see that MM-MLPs obtain the speedup range from 6 to 12
under the seven different convergence criterions. From Fig. 2, we can see that MM-
MLPs reach the best 10-fold cross validation error with significantly fewer epochs.

Fig. 1. Variation of the average training errors with epochs (left) and variation of average test
errors with epochs (right) on Dna data set. “*” denotes the best test error.

Table 2. Epochs and training times of MM-MLPs and MLPs under the different criterion on
Computer Activity data set

MM-MLP MLP
Criterion Epoch Time Epoch Time

0.00200/19.6020 8.400 7.361 73.300 50.055
0.00100/9.8010 14.000 11.891 120.700 85.627
0.00090/8.8209 17.000 14.014 154.500 108.704
0.00080/7.8408 20.700 17.111 229.000 161.663
0.00070/6.8607 28.900 23.909 379.300 274.800
0.00065/6.3706 49.700 40.422 647.900 470.228
0.00060/5.8806 79.500 64.567 1156.800 835.763
0.00055/5.3906 306.200 246.749 2027.900 1483.817

Fig. 2. Variation of average training errors with epochs (left) and variation of 10-fold cross
validation errors with epochs(right) on Computer Activity data set. “*” denotes the best 10-fold
cross validation error.

914 L. Bo, L. Wang, and L. Jiao

4 Conclusion

In this paper, MiniMin model is presented to train MLPs, which can ensure that the
weights of the last layer are optimal at each step. The empirical comparisons on the
four big benchmark data sets show that our method obtains a significant speedup
relative to the classical formulation.

References

1. Rumelnart, D.E., Hinton, G.E. and Williams, R.J.: Learning reprensentation of backproga-
tion errors. Nature 223 (1986) 533-536

2. Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are univesal
approximators. Neural Networks 2 (1989) 359-366

3. Rumelhart, D.E., Hinton, G.E. and Williams, R.J.: Learning Internal Representations by
Error Propagation. In: Parallel Distributed Processing: Exploration in the Microstructure of
Cognition (1986) 318–362

4. Battiti R. and Masulli, F.: BFGS Optimization for faster and automated supervised learing.
International Neural Network conference (1990) 757-760

5. Hagan, M.T. and Menhaj, M.: Training feedforward networks with the Marquardt al-
grithm. IEEE Transactions on Neural Networks 5 (1994) 989-993

6. Moller, M.F.: A Scaled conjugate gradient algorithm for fast supervised learning. Neural
Network 6 (1993) 525-533

7. Demuth, H. and Beale, M.: Neural network toolbox for use with MATLAB. The Mat-
Works Inc. Natick, MA (1998)

8. Hagan, M.T., Demuth, H.B. and Beale, M.H.: Neural Network Design. Boston. MA: PWS
Publishing (1996)

9. Boyd, S. and Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004).

10. Michie, D., Spiegelhalter, D.J. and Taylor, C.C.: Machine Learning, Neural and Statistical
Classification. Prentice Hall (1994)

11. Rasmussen, C.E., Neal, R.M., Hinton, C.E., Van Gamp, D., Revow, M., Ghahramani, Z.,
Kustra, R. and Tibshirani, R.: The Deleve Manual (1996)

	Introduction
	MiniMin Multi-layer Perceptrons
	Empirical Study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

