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Abstract

Structured outputs such as multidimensional vectors or
graphs are frequently encountered in real world pattern
recognition applications such as computer vision, natu-
ral language processing or computational biology. This
motivates the learning of functional dependencies between
spaces with complex, interdependent inputs and outputs, as
arising e.g. from images and their corresponding 3d scene
representations. In this spirit, we propose a new structured
learning method—Structured Output-Associative Regres-
sion (SOAR)—that models not only the input-dependency
but also the self-dependency of outputs, in order to pro-
vide an output re-correlation mechanism that complements
the (more standard) input-based regressive prediction. The
model is simple but powerful, and, in principle, applica-
ble in conjunction with any existing regression algorithms.
SOAR can be kernelized to deal with non-linear problems
and learning is efficient via primal/dual formulations not
unlike ones used for kernel ridge regression or support vec-
tor regression. We demonstrate that the method outperforms
weighted nearest neighbor and regression methods for the
reconstruction of images of handwritten digits and for 3D
human pose estimation from video in the HumanEva bench-
mark.

1. Introduction
We study continuous structured prediction methods in-

spired by models and representations in computer vision
and pattern recognition. In this context, visual pose estima-
tion, segmentation, or object and action recognition can be
formulated as learning of complex functional dependencies
between multivariate input and output representations.1 For
vision, the input is often an image or a descriptor, e.g. a his-
togram that quantizes the occurrence of color, gradient fea-
tures or object parts over an image, and the output is a con-

1Vectorized representations are to some degree incidental, as vectors
can encode symbolic, structured representations, like graphs, trees or se-
quences, and these can be compared using sophisticated kernel-based sim-
ilarity measures, rather than Euclidean ones.

tinuous structured scene representation—an object shape, a
human pose, or a sequence of temporal state labels. Both
inputs and outputs are high-dimensional and structured. In-
put descriptors reflect correlated spatial image statistics and
the outputs (the scene representations) are correlated due to
regularities in the 3d world. For example, people most often
move on the ground, and their motion is not only temporally
coherent but also constrained by physical factors like equi-
librium or by functional factors like actions, intentions, or
avoidance of obstacles. People also interact with objects
made of parts that cannot occur in arbitrary configurations.

Figure 1. Dependency model for one output variable of SOAR. yt

is the current output, and m and d are dimensionality of inputs and
outputs, respectively. Notice yt not only depends on the input x =
[x1, . . . , xm]>, but also on the remaining outputs y−t = y \ yt.

To conclude, in structured vision problems each out-
put depends not only on the input, but also on output
components other than itself. Neglecting output correla-
tions, e.g. by predicting them independently, thus failing
to use the appropriate context, disregards valuable informa-
tion and can lead to inconsistent, suboptimal estimates. In
this paper, we present a novel continuous structured predic-
tion method—Structured Output-Associative Regression
(SOAR)—which learns functional dependencies where out-
puts are both input-dependent and self-dependent (fig. 1).
This effectively augments a classical input-based regressor
with output auto-association, where outputs other than the
one being predicted act as auxiliary features. Inference is
coupled with the goal to make the prediction resonate with
completion from auxiliary outputs. SOAR can be gener-
alized with kernels that can solve non-linear problems and
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scales well to large datasets. Because learning separates, ef-
ficient finite-dimensional primal/dual formulations similar
to kernel ridge regression or support vector regression can
be used. We show that the algorithm outperforms regression
and weighted nearest neighbor methods for the reconstruc-
tion of 3d human motion from monocular and multicamera
video.

1.1. Related Work

This research primarily focuses on structured prediction
and its computer vision applications, most notably 3d hu-
man pose estimation. Discriminative methods for 3d pre-
diction rely on a training set of images and ground truth
3d data (e.g. human pose obtained from mocap systems)
in order to train models of various complexity: nearest-
neighbor schemes [20, 17], regression and variants [1], mix-
ture of experts [18, 23, 22] or semi-supervised models [15]
have been demonstrated to give good practical performance.
Their main advantage stems from being automatic: hand-
specifying the initial pose or the camera calibration param-
eters is no longer necessary. The methods are conceptually
simpler than more sophisticated generative methods based
on physical models and they are often faster. However, so
far discriminative vision methods focused less on predic-
tion with interdependent outputs: many existing algorithms
process the outputs as being independent and train sepa-
rate models for each one (but see [23, 5]). For complex
structured problems, this strategy can be both inconsistent
and sub-optimal. As the output dimensionality increases, to
learn efficiently, one has to consider correlations between
outputs, correlations between inputs, as well as joint corre-
lations. There is also a choice of modeling correlations as
part of the loss function, or as a form of regularization.

One way to model input correlations for continuous
structured prediction is by sharing the weights of correlated
features. Other methods rely on low-dimensional input rep-
resentations: partial least squares and its extensions (sliced-
inverse regression) [7, 11] recover a linear subspace that is
informative for prediction whereas manifold regression [16]
pursues the non-linear case using cross-covariance opera-
tors. Kernel dependency estimation (KDE) [27] uses kernel
PCA to model (embed) correlations among both inputs and
outputs and fits a regression model in the embedded space.
A pre-image calculation is required in order to recover the
output in the original representation. Cortes and Mohri [8]
give a conceptually cleaner reformulation of KDE where the
kernel PCA is no longer explicitly required. Applications
of KDE methods in vision in conjunction with conditional
temporal models are given in [23].

Alternatively to assuming a manifold structure, Mic-
chelli and Pontil [14] used a matrix-valued kernel to model
structure in the outputs. Their formulation yields a more
expensive training procedure, as the number of variables

equals to the dimensionality of the output times the size of
training set, and the resulting program is not sparse. There
is also a substantial volume of research focusing on the
structured prediction case for discrete outputs, both in the
probabilistic, maximum likelihood setting, e.g. dependency
networks, MEMM, CRF [10, 13, 12] and for max-margin
losses, e.g. SVM-ISOS [26]. Generalizations to continuous
outputs are given in [28]. Structural SVMs learn a scoring
function so that the pair corresponding to the given input-
output training example ranks higher than a pair formed by
the given input and any other output.2 The methods need
to handle infinitely many constraints, which leads to semi-
infinite programs. Duality theorems similar in spirit to the
strong/weak duality for the finite case exist, in principle.
In practice, the models are solved using cutting plane algo-
rithms, by creating a nested sequence of successively tighter
relaxations of the original optimization problem and finding
a small set of active constraints that ensure sufficiently ac-
curate solutions.3

2. Structured Output-Associative Regression
In this section we will describe our Structured Output-

Associative Regression Model (SOAR) with both its ker-
nel ridge regression (§2.1) and support vector regression
variants (§2.2). The basic principles are similar, the dif-
ference lies in the loss functions used (square loss versus
ε-insensitive loss) and the optimization methods employed
to estimate parameters.

In multiple output regression, we are given a training set
of input-output pairs {xi,yi}N

i=1, where N is the size of
training set, y ∈ Rd are interdependent outputs, and d is the
dimensionality of the output. The goal is to learn the vector-
valued function f = [f1, . . . , fd]> which best represents
the relationship between inputs and outputs.

In SOAR, the basic idea is that output components other
than the one we focus on at a given time can be considered
as auxiliary features and used to complement the more stan-
dard (for regressive models) input features. We assume that
the current output yj is related to all the other outputs y−j

by a discriminative function f j with generalized linear form

f j = (uj)>φ(x) + (vj)>ϕ(y−j) + bj (1)

where y−j is the (d − 1)-dimensional output vector with
the j-th entry removed, uj and vj are parameter vectors,

2Max-margin methods aim to make the true solution out-score any
other option, whereas maximum-likelihood criteria (in normalized mod-
els) aims at maximizing the volume associated to it. The former rely on
global optimization, the latter on integration. For most high-dimensional
continuous models, exact calculations of both measures are intractable.

3Structural SVM [4] were applied to predict the coordinates of a bound-
ing box of an object (a continuous subroutine within an object detector) by
defining a special histogram kernel over image regions contained within
the bounding box. Their efficient, tractable branch-and-bound search strat-
egy is however not immediately applicable to general output kernels, e.g.
the Gaussian, or three-dimensional state spaces as considered here.



with bj the bias, and φ(x) and ϕ(y−j) are high dimen-
sional features induced by kernel functions kφ(xr,xs) and
kϕ(y−j

r ,y−j
s ), respectively.

The problem of learning a function from finite samples
can suffer from over-fitting without capacity control. Typ-
ically we learn the parameters of the vector-value function
f by optimizing the regularized empirical risk RL

{ûj , v̂j , b̂j}d
j=1 = argmin{uj ,vj ,bj}d

j=1
RL ≡ (2)

≡
d∑

j=1

N∑

i=1

{
L(yj

i , f
j(xi,y

−j
i ;uj ,vj , bj) + Ω(uj ,vj ;Cj)

}

where L is the loss function, Ω(uj ,vj ;Cj) is the regular-
izer and Cj are hyperparameters that control the intensity
of regularization. Throughout the paper, we assume the fol-
lowing L2-norm regularizers

Ω(uj ,vj ;Cj) =
Cj

1

2
||uj ||2 +

Cj
2

2
||vj ||2 (3)

Notice that {ui,vi, bi} and {uj ,vj , bj}, where i 6= j, in (2)
are decoupled, so groups of parameters for each dimension
can be optimized independently. Unlike classical regression
however, we cannot estimate the output directly from the
discriminative function and a new input x since unknown
output components are involved in the second term in (1).
Therefore, for inference we optimize, w.r.t y, the regular-
ized loss defined over the given input x and the unknown
output vector y

ŷ = argminyRI ≡
d∑

j=1

L(yj , f j(x,y−j ; ûj , v̂j , b̂j)) (4)

where we dropped constant regularization terms. There is
no closed-form solution for the general case (4): non-linear
optimization is required to make predictions. However, for
structured problems with medium-sized output dimension-
ality (d < 1000) this aspect is not of major practical con-
cern. The optimizer converges fast, particularly when rea-
sonable initializations are given. In practice, good initial-
izations are obtained from the corresponding independent-
output regression model (comparisons are given in §3, see
also fig. 2).4

Our model covers classical independent-output regres-
sion as a special case. If Cj

2 = ∞, j = 1 . . . d, the pa-
rameter vector v is set to 0 to make the loss (2) as small
as possible (any nonzero v leads to infinite loss), which ef-
fectively turns-off the auxiliary, self-dependent output term
(vj)>ϕ(y−j). Inference also trivializes: the y that mini-
mizes (4) is yj = (ûj)>φ(x) + b̂j and the minimum of (4)
is always 0.

4The model works even if some outputs are perfectly correlated in train-
ing. The method will not discard their inputs because: (i) initialization uses
regression with no output self-dependency, hence output will be at least as
good as input prediction could deliver, and (ii) L2-norm regularizers are
not perfect feature selectors (input contributions cannot be turned off).

In principle, we can work with any type of loss. Here,
we consider the two most popular ones used in regression:
the square loss and the ε-insensitive loss, which lead to the
SOARkrr and SOARsvr models, respectively.

2.1. SOARkrr

In the framework of SOAR, we can extend kernel ridge
regression [19] to structured prediction by considering the
square loss

L(y, f) =
1
2
(y − f)2 (5)

The regularized loss over the training set is

min(uj ,vj)
1
2

N∑

i=1

ξ2
i +

Cj
1

2
||uj ||2 +

Cj
2

2
||vj ||2

s.t. ξi = yj
i − (uj)>φ(xi)− (vj)>ϕ(y−j

i ) (6)

In the most cases, the dimensionality of φ(x) or ϕ(y−j) is
much higher than training set size N (e.g. for Gaussian ker-
nels, the feature space is infinitely dimensional). Therefore,
the optimization problem (6) can be more easily solved in
its dual form. The Lagrangian H corresponding to the un-
constrained (6) is

H =
1
2

N∑

i=1

ξ2
i +

Cj
1

2
||uj ||2 +

Cj
2

2
||vj ||2+ (7)

+
N∑

i=1

αj
i{yj

i − (uj)>φ(xi)− (vj)>ϕ(y−j
i )− ξi}

where αj
i are Lagrange multipliers (or dual variables).

From the KKT conditions, the partial derivatives of the La-
grangian H w.r.t. the primal variables must vanish




uj = 1

Cj
1

∑N
i=1 αj

i φ(xi)

vj = 1

Cj
2

∑N
i=1 αj

i ϕ(y−j
i )

ξi = αj
i , i = 1 . . . N

(8)

Substituting (8) into (7), we obtain the dual optimization

minα
1
2
(αj)>

(
1

Cj
1

Kφ +
1

Cj
2

Kϕ + I

)
αj −

N∑

i=1

αj
i y

j
i

(9)
where Kφ and Kϕ are N ×N kernel matrices with Kφ

st =
kφ(xr,xs) and Kϕ

rs = kϕ(y−j
r ,y−j

s ). Since (9) is an un-
constrained convex quadratic program, we obtain a closed-
form solution for learning

α̂j =

(
1

Cj
1

Kφ +
1

Cj
2

Kϕ + I

)−1

(Yj)> (10)

where Yj is the j-th row of Y which stores the outputs
columnwise.5 Combining (8) and (10), we obtain the struc-

5For large datasets it can be prohibitive to invert the kernel matrix, as
this may not fit into memory (this is known as the out-of-memory case).



tured regression function, here referred as fkrr

f j
krr =

{
1

Cj
1

N∑

i=1

α̂j
i φ(xi)

}>

φ(x)+

+

{
1

Cj
2

N∑

i=1

α̂j
i ϕ(y−j

i )

}>

ϕ(y−j) = (11)

=
1

Cj
1

N∑

i=1

α̂j
i k

φ(x,xi) +
1

Cj
2

N∑

i=1

α̂j
i k

ϕ(y−j ,y−j
i )

The inference process for SOARkrr is

ŷ = argminyRI ≡ 1
2

d∑

j=1

(yj − f j
krr)

2 (12)

Notice that optimization variables are inside the kernel
function (referred as the pre-image problem in the kernel
community, although, strictly, we solve a more general
problem than finding a kernel argument from a given tar-
get feature space value, as our target is itself unknown). We
optimize (12) using a BFGS quasi-Newton optimizer with
cubic polynomial line search for optimal step size selection
(see also fig. 2). We initialize the optimizer using predic-
tion given by kernel ridge regression trained on independent
outputs. In our (rather extensive) experiments, this consis-
tently improved both the accuracy and the speed of predic-
tion compared to random initialization. Our models can also
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Figure 2. The progress of our BFGS optimizer on a test sample of
box motions in HumanEva-I. Initialization is given by kernel ridge
regression assuming independent outputs. The horizontal-axis is
the dimensionality of the body joint positions and the vertical-axis
is the corresponding squared loss 1

2
(yj − f j

krr)
2. Notice the rapid

convergence on this dataset.

be understood as learning a nonlinear mapping over outputs.
To make this more clear, we rewrite (6) as

1
2

N∑

i=1

(zj − (uj)>ϕ(xi))2 +
Cj

1

2
||uj ||2 +

Cj
2

2
||vj ||2 (13)

One can then resort on iterative methods such as conjugate gradient or
greedy block coordinate descent to solve (9).

with: zj = gj(y) = yj − (vj)>ϕ(y−j), where gj(y) can
be viewed as a nonlinear mapping from the d dimensional
output space to the d dimensional embedding space. Ac-
cording to this view, our model bears certain resemblance
with kernel dependency estimation [27], which directly de-
fines a nonlinear mapping ϕ(y) over outputs instead of
learning it. However, the dimensionality of the embed-
ding space in kernel dependency estimation can be infinite
(e.g. for Gaussian kernels) and the methods resort on kernel
principal component analysis to project ϕ(y) to the first p
principal components—an operation that incurs additional
training/testing costs, as kernel principal component analy-
sis and the dimensionality of the embedding space scale as
O(n3). In contrast, output dimensionality is d in SOAR,
and no extra step is required—one only needs to train d
separable models and many efficient decomposition algo-
rithms are available such as sequential minimal optimiza-
tion (SMO) [9] and greedy block coordinate descent.

2.2. SOARsvr

For structured-output associative support vector regres-
sion models, we consider the ε-insensitive loss [25]

L(y, f) = max(0, |y − f | − ε) (14)

where ε is a small constant. Inference in SOAR-SVM re-
quires to minimize the ε-insensitive loss w.r.t. the output
vector y

ŷ = argminy

d∑

j=1

max(0, |yj − f j
svr| − ε) (15)

where fsvr is the learned target function. Similarly with
SOARkrr, we minimize (15) using a sub-gradient opti-
mizer, initialized with prediction given by support vector
regressors trained on independent outputs. Detailed deriva-
tions for SOARsvr are given in the Appendix.

3. Experiments
In this section, we illustrate our models for the recon-

struction of images of handwritten digits and 3d human
pose reconstruction in the HumanEva benchmark, where
we give results for both monocular and multicamera video.
For experiments, we use Gaussian kernels kφ(xr,xs) and
kϕ(y−j

r ,y−j
s ). The kernel hyperparameters and the regu-

larizers Cj
1 and Cj

2 are grid-searched by five-fold cross val-
idation (training set), and selected to be the same for all
output dimensions.

3.1. Handwritten Digits Reconstruction

We considered a problem of image reconstruction in-
spired by [27]: given the outer 240 pixel values of a hand-
written digit from USPS test set (2007 samples), the goal



Models Training set size
500 2000 7291

NN 0.414 0.372 0.341
KRR 0.367 0.296 0.250
SVR 0.366 0.295 0.250
KDE 0.373 0.304 0.260

SOARkrr 0.339 0.278 0.233
SOARsvr 0.332 0.273 0.230

Table 1. Comparisons of mean absolute error of the different
models on test set. The gray values are normalized to [0,
2], as provided. The lowest error is indicated in bold. NN
means nearest neighbor regression, KDE means kernel depen-
dency estimation[27] with 16d latent space obtained by kernel
principal component analysis (SOAR also predicts 16d outputs).

is to predict the 16 pixel values lying in the center based
on 7291 training samples (we do not assume knowledge of
the label of the digit). We compare SOAR with nearest
neighbor regression, kernel ridge regression, support vec-
tor regression and kernel dependency estimation in table 1.
SOAR methods obtain the lowest test error, typically 5-10%
improved relative to KRR and SVR.

3.2. Human Pose Estimation

The performance of different models is evaluated on
the HumanEva-I dataset [21], which consists of 4 subjects
performing 6 predefined actions: walking, jogging, throw-
catch, gestures, boxing and combo (walking followed by
jogging and then balancing on each one of the two feet).
Combo motions of all subjects and all motions of one sub-
ject are withheld. Table 2 summarizes the training and vali-
dation set.

Features Action Subject 1 Subject 2 Subject 3 Total
Walking 1197 870 931 2998
Jogging 597 789 834 2220

SC Gestures 795 893 1096 2784
Box 783 652 1015 2450

ThrowCatch 217 1011 0 1228
Total 3589 4215 3876 11680

Walking 1176 876 895 2947
Jogging 439 795 831 2065

BSIFT Gestures 801 681 214 1696
Box 502 464 933 1889

ThrowCatch 217 806 0 1023
Total 3135 3622 2873 9630

Table 2. Size of training and validation set of each motion of each
subject for SC and block SIFT (BSIFT) features on HumanEva-1.

Image Descriptors: We consider two types of features:
histograms of shape contexts (SC) and SIFT descriptors ex-
tracted on a regular grid and concatenated in a long de-
scriptor BSIFT (block SIFT). For SC [3, 6], we use non-
parametric models and adaptive threshold procedures for
background subtraction. Edges are extracted from the sil-
houette image and 400 points are sampled on edges. The

shape context descriptor at each image location is computed
based on 15 angular bins and 8 radial bins. The SC at each
of the 400 points per image are computed every 15th image
in training and used to generate a 300-d codebook, learned
using k-means (hence the descriptor size is 300). For BSIFT
[24, 17], we use background subtraction with risk values
suggested in HumanEva’s documentation [21]. The silhou-
ette bounding box is divided in a 6 x 5 cell grid, and gradient
orientations in each cell are quantized into 9 orientation bins
(00 − 1800), for a descriptor of length 270.
Pose encoding: Three-dimensional human poses (y) are
represented as 60d vectors of three-dimensional body joint
positions (20 markers each with X, Y and Z coordi-
nates) using ’torsoDistal’ as root. All poses are prepro-
cessed by subtracting the root from all the other joint po-
sitions in every frame. The prediction error is the Eu-
clidean distance between the estimated joint position and
the true position averaged over all joints, per frame [21]:
Errseq = 1

T

∑T
i=1 D(yi,yi), where T is the length of se-

quence and D(yi,yi) = 1
M

∑M
j=1 ‖mj(yi) − mj(yi)‖,

where mj(yi) ∈ R3 is a function which extracts the three
dimensional coordinates of the jth joint position, M is the
number of the positions, and ‖ · ‖ the Euclidean distance.

To give additional intuition on why structured predic-
tion is adequate for the problem, we show correlation co-
efficients corresponding to the five motion types in fig. 3.
Entries are computed as: ρij = cov(yi,yj)√

cov(yi,yi)cov(yj ,yj)
, where

cov(·, ·) is the covariance between two random variables.
The light, highly correlated components outside diagonal,
indicate non-negligible coupling between joint positions.

We report the average joint position error of WKNN
(weighted k-nearest neighbors), KRR (kernel ridge re-
gression with independently trained output dimensions),
SOARkrr, SVR (support vector regression with indepen-
dently trained outputs) and SOARsvr. In table 3 and 4 we
report results on HumanEva’s validation set.6 We run two
types of experiments: one trained on a single motion of one
subject and tested on the motion of corresponding subject;
the other trained and tested on the full dataset (all motions of
all subjects). For the latter, we speed-up using a K nearest
neighbors preprocessing for a test input, then perform KRR,
SOARkrr, SVR, or SOARsvr on the reduced set. A similar
approach is used in local regression [2]. (While we can run
the methods on the full training set, we have found that all
methods benefit from k-nearest neighbor preprocessing.) It
can be seen that SOARkrr and SOARsvr consistently out-
perform their counterparts by about 5-10mm, for each mo-

6Notice that for this set of experiments we only train/validate on the
HumanEva training set, and test on the validation set, a protocol that is
methodologically valid. We do this in order to run more extensive exper-
iments with many methods—this would be otherwise impractical, at the
current operating speed of HumanEva’s online server (for online reports
on the test set, see table 5).



Feature Motion KRR SOARkrr SVR SOARsvr

Walking 58.9 49.9 61.5 47.6
Jogging 65.9 59.5 63.2 57.2

BSIFT(C1) Gestures 48.1 44.2 47.4 44.7
Box 67.8 61.6 64.2 59.8

ThrowCatch 95.9 94.4 95.6 93.0
Average 67.3 61.9 66.4 60.5
Walking 66.4 55.3 67.1 54.1
Jogging 75.5 68.1 73.2 66.7

SC(C1) Gestures 54.0 48.3 53.1 46.8
Box 81.5 73.3 78.3 71.9

ThrowCatch 115.9 111.0 114.3 109.5
Average 78.7 71.2 77.2 69.8

Table 3. Models separately trained on each motion of each subject.
Evaluation of different models that use BSIFT and SC features on
the validation set of HumanEva-I (error reported in mm). ’C1’
means that the image feature is extracted from images captured by
the first camera only (monocular experiments). Error is averaged
over the same motion of the three subjects. ’Average’ accumulates
averages for all motions of all subjects.

Feature Motion KRR SOARkrr SVR SOARsvr

Walking 60.2 53.4 59.3 53.7
Jogging 55.6 49.3 54.1 48.6

BSIFT(C1) Gestures 47.4 43.2 46.9 42.8
Box 68.6 64.3 68.4 63.9

ThrowCatch 85.9 76.4 85.3 79.8
Average 63.5 57.3 62.8 57.8
Walking 67.6 59.8 66.3 58.7
Jogging 68.4 62.7 67.9 62.1

SC (C1) Gestures 53.9 49.6 53.5 48.3
Box 81.1 77.3 80.4 75.6

ThrowCatch 116.2 110.3 115.4 109.8
Average 77.4 71.9 76.7 70.9

Table 4. Models trained on all subjects and motions. Except for
the different training protocol, all features and error measures are
identical to the ones described in table 3. Notice the similar perfor-
mance in both cases, suggesting that the predictor generalizes well
to different subjects—no apriori personalized subject/body model
is necessary.

tion.
We report the average joint position error of weighted

K nearest neighbors (WKNN) and SOARkrr (also us-
ing K nearest neighbors) (both are trained on the train-
ing+validation set) on the test set, as computed by Hu-
manEva’s online evaluation system, in table 5. The tempo-
ral evolution of the average joint position error for WKNN
and SOARkrr is given in fig. 4. Sample images and quali-
tative 3D human pose reconstructions rendered from a syn-
thetic viewpoint, obtained from SOARkrr on test set, are
shown in fig. 5.

4. Conclusions
We have introduced a novel continuous structured pre-

diction method—Structured Output-Associative Regression
(SOAR)—to learn functional dependencies between spaces
with complex, interdependent inputs and outputs, as aris-
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Figure 4. Average joint position test error per frame for two
different models, and three different motions, all using BSIFT
(C1+C2+C3) image features, as computed by HumanEva’s online
evaluation system. WKNN and SOARkrr use 25 and 100 nearest
neighbors, respectively, both cross-validated.

Figure 5. Qualitative 3d reconstruction results on the HumanEva-1
test set (original images on the top row, 3D reconstructions seen
from synthetic viewpoints on the second row).

ing in computer vision and machine learning problems. In
the model, output components are constrained both by in-
put features and by complementary outputs acting as auxil-
iary variables. Inference is coupled with the goal to make
prediction resonate with completion from auxiliary outputs.
SOAR can be generalized with kernels that can solve non-
linear problems, and scales well to large datasets via effi-
cient primal/dual formulations, for both the square and the
ε-insensitive loss functions. We show that the algorithm
significantly outperforms weighted nearest neighbor and re-
gression methods for the reconstruction of images of hand-



Figure 3. Matrices of correlation coefficients for 3d poses in the training set of HumanEva-I (57d vectors of temporally ordered three-
dimensional body joint positions, with root joint ’torsoDistal’ removed). From left to right: Box, Gestures, Jogging, ThrowCatch and
Walking. Lighter means that corresponding pairs of output variables are more correlated.

Feature Motion Subject 1 Subject 1 Subject 3
WKNN SOARkrr WKNN SOARkrr WKNN SOARkrr

Walking 47.5(21.1) 45.4(23.2) 46.7(35.2) 39.9(28.0) 66.7(32.0) 43.0(20.3)
Jogging 54.5(22.4) 46.7(19.3) 43.3(14.4) 37.0(10.3) 56.1(25.4) 46.4(28.9)
Gestures 23.4(13.5) 21.8(8.0) 75.1(28.1) 74.5(28.1) 75.3(11.1) 64.6(13.6)

BSIFT(C1) Box 79.7(27.7) 74.7(22.0) 105.8(46.9) 95.7(40.5) 100.4(52.3) 99.3(32.1)
ThrowCatch / / 71.4(34.2) 58.2(25.1) 111.7(32.9) 91.8(29.9)

Combo / / 78.6(48.6) 72.8(52.0) 114.0(77.3) 108.1(82.3)
Average 51.3 47.2 70.1 63.0 87.4 75.5
Walking 37.5(12.0) 33.0(11.6) 40.1(23.9) 29.8(13.3) 55.3(25.1) 36.2(16.7)
Jogging 45.2(13.7) 35.8(11.8) 37.7(12.2) 29.6(7.5) 45.4(18.3) 37.4(14.3)
Gestures 23.7(7.2) 21.0(3.5) 72.8(26.3) 63.9(21.5) 56.1 (6.4) 48.8(5.2)

BSIFT(C1+C2+C3) Box 88.7(36.2) 73.9(20.2) 91.8(41.2) 82.2(40.9) 92.3(47.9) 88.1(50.3)
ThrowCatch / / 57.6(23.8) 44.9(23.4) 92.8(31.8) 70.1(32.9)

Combo / / 71.9(52.2) 58.8(50.8) 83.9(53.0) 73.9(52.3)
Average 48.8 40.9 62.0 51.5 71.0 59.1

Table 5. Models trained on all subjects and motions. Evaluation (BSIFT features) on the test set of HumanEva-I (error reported in mm).
Average joint position error is computed by Humaneva’s online evaluation system, with lowest error indicated in bold. ’/’ entries mean
that values are not available (no test results returned), ’average’ gives averages for different motions of the same subject; ’C1’ gives results
for image feature extracted from images captured by the first camera only (monocular experiments), notice the difference w.r.t. [17]; for
’C1+C2+C3’ image features from three cameras are combined in a single descriptor.

written digits and the estimation of 3D human pose from
video in the HumanEva benchmark.
Future Work: We plan to study methods for scaling SOAR
to massive datasets, including sparsity (L1-norm regulariz-
ers) and block coordinate descent methods. Iterative out-
put re-estimation procedures, bias and connections with
pseudo-likelihood methods are also studied.
Acknowledgements: This work was supported, in part, by
the NSF and the EC, under awards 0535140 and MCEXT-
025481.

Appendix: Derivations for SOARsvr

Given (14), the regularized loss over the training set is

min(uj ,vj ,bj)

N∑

i=1

(ξi + ζi) +
Cj

1

2
||uj ||2 +

Cj
2

2
||vj ||2 (16)

s.t. yj
i − (uj)>φ(xi)− (vj)>ϕ(y−j

i )− bj ≤ ε + ξi

yj
i − (uj)>φ(xi)− (vj)>ϕ(y−j

i )− bj ≥ −ε− ζi

ξi, ζi ≥ 0, i = 1 . . . N

The Lagrangian H corresponding to the unconstrained
problem (16) is

H =
N∑

i=1

(ξi + ζi) +
Cj

1

2
||uj ||2 +

Cj
2

2
||vj ||2+ (17)

+
N∑

i=1

αj
i{yj

i − (uj)>φ(xi)− (vj)>ϕ(y−j
i )− bj − ε− ξi}

+
N∑

i=1

βj
i {−yj

i + (uj)>φ(xi) + (vj)>ϕ(y−j
i ) + bj − ε− ζi}

−
N∑

i=1

ηiξi −
N∑

i=1

λiζi

where αj
i , β

j
i , ηi, λi ≥ 0 are Lagrange multipliers. From

the KKT conditions on vanishing partial derivatives of La-



grangian H w.r.t. the primal variables, we obtain




uj = 1

Cj
1

∑N
i=1(α

j
i − βj

i )φ(xi)

vj = 1

Cj
2

∑N
i=1(α

j
i − βj

i )ϕ(y−j
i )

∑N
i=1(α

j
i − βj

i ) = 0
αj

i = 1− ξi − ηi, i = 1 . . . N

βj
i = 1− ζi − λi, i = 1 . . . N

(18)

Substituting (18) into (17), we have the dual problem

H =
1
2
(αj − βj)>

{
1

Cj
1

Kφ +
1

Cj
2

Kϕ

}
(αj − βj) +

+ε

N∑

i=1

(αj
i + βj

i )−
N∑

i=1

yj
i (α

j
i − βj

i )

s.t.
N∑

i=1

(αj
i − βj

i ) = 0, αj
i , β

j
i ∈ [0, 1] (19)

(19) is a constrained convex quadratic programming with
global optimal solution {α̂j , β̂j , b̂j}d

j=1. An interior-point
optimizer for (19) requires O(N3) computational cost and
O(N2) memory storage. Instead, many decomposition al-
gorithms can be used to solve (19) efficiently, with com-
putational cost and memory requirements O(N2) (roughly)
and O(N). Here, we implement a second order SMO al-
gorithm. Inference in SOAR-SVM achieved by minimizing
the ε-insensitive loss w.r.t. the output vector y, c.f . (15),
where

f j
svr =

1
Cj

1

N∑

i=1

(α̂j
i − β̂j

i )k
φ(x,xi)+

+
1

Cj
2

N∑

i=1

(α̂j
i − β̂j

i )k
ϕ(y−j ,y−j

i ) + b̂j (20)
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