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Abstract

We present an integrated model for visual object local-

ization and continuous state estimation in a discriminative

structured prediction framework. While existing discrimi-

native ‘prediction through time’ methods have showed re-

markable versatility for visual reconstruction and track-

ing problems, they tend to assume that the input is known

(or the object is segmented) a condition that can rarely

be accommodated in images of real scenes. Our struc-

tural Support Vector Machine (structSVM) framework of-

fers an end-to-end training and inference framework that

overcomes these limitations by consistently searching both

in the space of possible inputs (effectively an efficient form

of object localization) and in the space of possible struc-

tured outputs, given those inputs. We demonstrate the po-

tential of this methodology for 3d human pose reconstruc-

tion in monocular images both in the HumanEva bench-

mark, where 3d ground truth is available, and qualitatively,

in un-instrumented images of real scenes.1

1. Introduction

We study the integrated problem of localization and con-

tinuous state estimation for structured vision problems, us-

ing discriminative learning methods. A variety of visual

scene understanding scenarios require both the localization

of scene elements, objects or people in images, e.g. identify-

ing their bounding box, and the reconstruction of their inter-

nal representation/state with respect to the task (orientation,

human joint angles, object part locations in 2d or 3d, etc.)

from images or video.2 It is well understood that both inputs

and outputs are structured and exhibit strong internal corre-

lations, see also fig. 3. Originally, the problem has been

approached using generative methods based on Kalman fil-

ters, for Gaussian models [3], or particle filters, in the non-

1All authors contributed equally to this research.
2The separation into detection/localization and state estimation is used

for specificity and in order to put existing work in perspective. Naturally,

the location of an object is best viewed as a component of its state. The

very product of this paper is a uniform discriminative model.

Gaussian case [16]. In principle, generative frameworks

provide dynamic constraints and support a unified treate-

ment of detection and state estimation: marginal distribu-

tions can be obtained for both the image location of an ob-

ject and for its other state components.3 While this made it

possible to achieve promising results in problems with state

spaces of moderate dimension, the setting faces important

computational challenges. Sampling in high-dimensions re-

mains problematic, particularly at run-time, although good

methods exist [10, 7, 28]. In addition, current models of-

ten rely on naı̈ve Bayes assumptions in order to achieve

tractability. This tends to produce unrealistically spiky like-

lihoods that complicate inference, and are difficult to mold

into a state-space model that reflects the distribution of cor-

rect object locations in images.

The difficulties encountered with generative models mo-

tivated a flux of research into discriminative techniques. In

this case, continuous state estimation is formulated as learn-

ing mappings from image features to observations based

on training sets of object state instances and their images.

Methods range from nearest neighbor or regression, to mix-

ture of experts [24, 1, 23, 27, 26]. Temporal constraints

can also be modeled. Together these have produced den-

sity propagation algorithms, effectively ‘predictors through

time’[27, 1] that have overcome some of the limitations of

previous methods in terms of generality, ease of construc-

tion, speed, and the ability to automatically initialize and

track complex motions.

However, a weak spot of existing discriminative time-

series frameworks is their very origin in functional approxi-

mation from data. While regressive methods, no matter how

complex, assume the input is known at test-time (run-time),

this is rarely the case for visual detection and tracking prob-

lems, where one needs to search not only over possible out-

puts but also rank/select/classify in the large space of pos-

sible inputs—a problem that is often separately addressed

as object detection or localization. This led to methods that

dominantly worked with clean, segmented objects, or com-

3The methods offer a joint distribution on all state variables. This de-

composes as two marginals, one on variables controlling image location,

the other on the remaining (e.g. 2d or 3d) state dimensions.



bined a separately trained detector and a predictor [27, 26].

Here we search for an alternative, integrated end-to-end

learning and inference framework. We exploit large-margin

ideas and tensor product kernels for structured data in con-

junction with cutting plane algorithms, in order to incor-

porate object detection and continuous prediction-through-

time in a single discriminative model. We report encour-

aging results for human detection and 3d pose estimation

in monocular images, including both evaluation in the Hu-

manEva benchmark and in images of complex real-world

scenes.

1.1. Related Work

This research links to structured prediction methods and

their applications for tracking and human pose estimation

While the literature is too large to fully review, it is worth

pointing out that integrated methods for detection and con-

tinuous state estimation have not yet been proposed for vi-

sual tracking in a discriminative setting. Predictive meth-

ods [1, 23, 27, 26] have shown good potential for auto-

matic scene understanding but they often assume that the

outputs are independent and the input is given or easy to

obtain, e.g. features are extracted inside a bounding box ob-

tained from background subtraction. When visually analyz-

ing real-world scenes, this requirement is problematic. This

led researchers into studying the joint use of state predictors

and separately trained (sliding window) detectors or object

localizers [27, 26, 11].4

Structured data can be modeled either by including so-

phisticated constraints into regression methods (linear or

non-linear manifold assumptions [9, 27, 18, 8]), or by de-

signing new cost functions. There is a choice of modeling

correlations as part of the loss function, or as a form of reg-

ularization.

Another approach to structured prediction relies on max-

margin formulations in conjunction with kernels defined

over multivariate input and output spaces. Structural sup-

port vector machines, initially introduced for discrete state

spaces [29], can be generalized to continuous outputs by

learning a scoring function so that the pair corresponding to

the given input-output training example ranks higher than a

pair formed by the given input and any other output [32, 21].

Structural SVMs [4] have been applied to localization, in

order to predict the discrete coordinates of the bounding

box of an object (a subroutine within an object detector) by

defining a special histogram kernel over image regions con-

tained within the bounding box. Our work can be viewed

as a generalization of [29, 32] to integrated localization and

state estimation problems with continuous structured inputs

and outputs. The extension to continuous high-dimensional

state spaces is non-trivial in terms of both models/kernels

4While efficient 2d tree-based localization methods exist [22, 12], they

are applicable, typically, to discrete state spaces of moderate dimension.

and optimization, and we will show that structural SVM

can work even in cases where exact inference is intractable,

see also [13]. According to that taxonomy [13] our infer-

ence method falls within the class of greedy undergenerat-

ing methods (this stands in contrast to overgenerating meth-

ods, e.g. relaxations), but also notice that discrete experi-

ments in [13] find the performance of both types of meth-

ods similar in practice (naturally both the models and the

benchmarks in [13] are different from ours). A significant

amount of research focuses on structured prediction in a

probabilistic, maximum likelihood setting, e.g. dependency

networks, CRF [14, 19]. Such methods can be effective but

do not immediately lead to efficient algorithms for the con-

tinuous case—in particular training requires the calculation

of high-dimensional integrals. It also remains to be seen

to what extent normalization is desirable—in particular the

presence of multiple objects in an image would automati-

cally downgrade all peaks, no matter how strong the object

signal, making it difficult to reliably produce a set of dis-

crete answers in a variety of imaging conditions.

2. Joint Localization and State Estimation

In supervised learning, we are given a set of the input-

output pairs {ri, zi}N
i=1, where N is the size of training set

and z ∈ Z are interdependent outputs. We aim to learn

a function that best represents the relationship between in-

puts and outputs. In structural learning, the discriminative

function is a linear combination of joint features

g(r) = argminzfw(r, z) = w⊤Ψ(r, z) (1)

where w is a parameter vector and Ψ(r, z) is a fea-

ture vector induced by a joint kernel K(r, z, r′, z′) =
Ψ(r, z)⊤Ψ(r′, z′). The specific form of joint features

Ψ(r, z) is problem-dependent, an aspect discussed in detail

in §2.1. The scoring function fw(r, z) can be interpreted as
a compatibility that measures howwell the output zmatches

the input r.

To learn the discriminative function, fw(r, z), the struc-
tural SVM (structSVM) maximizes the generalized maxi-

mum margin loss:

min
w,ξ

1

2
w⊤w + Cξ (2)

s.t. ∀(z1, . . . , zN ) ∈ ZN

1

N
w⊤

N
∑

j=1

[Ψ(rj , zj) − Ψ(rj , zj)] ≥
1

N

N
∑

j=1

∆(zj , zj) − ξ

where ∆(zj , zj) is a loss function that should decrease

as the output zj approaches the ground truth zj . We use

the so-called ‘1-slack formulation’, which is equivalent to

the ‘n-slack’ analogue, but is more efficient in conjunction

with cutting plane algorithms (we use) due to a significantly

smaller dual problem [17].



Under infinitely many constraints, standard duality does not

apply. However, for any small δ we can assume a finite δ-

cover of our data domain, where the constraints are locally

uniform. This allows to recast the problem into one with

finite (yet large) number of constraints. In this case, the pri-

mal/dual theory implies that the parameter w has the form:

w =
1

N

∑

Z∈ZN

αZ

N
∑

j=1

[Φ(rj , zj) − Φ(rj , zj)] (3)

where Z = (z1, . . . , zN).

2.1. Joint Kernel for Location and State Estimation

For joint localization and state (pose) estimation, the in-

put is an image, r, and the output is the bounding box of

the object together with its corresponding continuous state

(e.g. 2d or 3d pose): z = (y,x). We use r|y to denote the

feature vector of image regions restricted within the bound-

ing box instantiated by y. Here, we consider a joint kernel

where the combined feature vector can be written as a tensor

product over the two corresponding subspaces

Ψ(r, z) = φ(r|y) ⊗ ϕ(x) (4)

where ⊗ denotes the tensor product, φ(r|y) is the feature

induced by the kernel Kr|y(r|y, r′|y′) defined over the im-

age region and ϕ(x) is the feature vector induced by the

state/pose kernel Kx(x,x′). For the tensor product feature
vector, the joint location and state kernel is chosen to have

the following form [29]:

K(r, z, r′, z′) = Ψ(r, z)⊤Ψ(r′, z′) =

= Kr|y(r|y, r′|y′)Kx(x,x′) (5)

Eq. (5) implies that the joint kernel is a product of com-

ponents computed over image regions within the bounding

box and the corresponding state, respectively. This tensor

product feature is rather general and can handle many types

of structured outputs, including multiclass and sequential

constraints. In vision, kernels are used to compare statis-

tics or image features, e.g. as inner products of histograms

defined over regions. This includes for example, bag-of-

feature models, regular grids like HOG, as well as spatial

pyramids based on weighted combinations of histogram in-

tersection kernels computed at multiple levels of image en-

coding. An attractive feature of histogram kernels is that

partially overlapping image regions share underlying statis-

tics.

On the other hand, since we work with continuous states,

ϕ(x) is a feature vector induced by the kernels defined over
continuous variables. Concurrently, we wish the kernel

function to be normalized to prevent the slack variable ξ

from diverging to infinity for some outputs. One possible

(but by no means the only) choice satisfying these desider-

ata is the Gaussian kernel. This is defined over continu-

ous variables and its 2-norm ‖ϕ(x)‖2 =
√

Kx(x,x) = 1.

Thus, for most of our experiments, the state/pose kernel has

the form: Kx(x,x′) = exp(−γx‖x − x′‖2).
When designing a similarity measure between two dif-

ferent input-output features, intuitively, we wish: 1) input-

output pairs with distant inputs should be dissimilar; and

2) input-output pairs whose inputs are nearby but outputs

are distant should also be dissimilar; otherwise stated only

the input-output pairs with both similar inputs and similar

outputs should be similar. The joint kernel we use satisfies

the above conditions because it is the product of two ker-

nels defined over inputs and outputs, respectively; hence its

value is small if any one of the two kernel component val-

ues is small (dissimilar). In this respect, the joint kernel is

stronger than the classical kernel (only defined over inputs),

where the input-output pairs with similar inputs but dissim-

ilar outputs have negative impact and can pull the estimate

in contradictory directions. For localization and state esti-

mation, the advantage of a joint kernel over separable ones

is that given a test image, the training data with dissimilar

states/poses from the test input will have reduced impact on

the bounding box search and estimate.

To summarize, the combined kernel handles the out-

put jointly, so dependencies among output variables can

be accounted for (in contrast, standard regression meth-

ods predict output components independently, which can

produce suboptimal models, but see also [5]). This ex-

plains why continuous structSVM achieves better perfor-

mance than support vector regression (SVR) and related

methods in our experiments. In addition, the model also

includes search/ranking in the space of possible object lo-

cations in the image, described next.

2.2. Output Loss Function

The output loss ∆(z, z′) should reflect how well z ap-

proaches the ground truth output z′. Within our joint ten-

sor product kernel formulation, the loss function definition

should be compatible with both the image and the state/pose

kernels. For the image kernel, we adapt the score used in the

PASCAL visual object challenge [4]:

∆y(y,y′) = 1 − Area(y ∩ y′)

Area(y ∪ y′)
(6)

where the quality of object localization is based on the

amount of area overlap, where Area(y∩y′) is the intersec-
tion of the two bounding boxes y and y′, and Area(y ∪ y′)
is their union.

For state/pose estimation, it is natural to consider the

loss function as a square distance in the reproducing ker-

nel Hilbert space induced by the kernel function Kx(x,x′)

∆x(x,x′) = ‖ϕ(x) − ϕ(x′)‖2 = (7)

= Kx(x,x) + Kx(x′,x′) − 2Kx(x,x′)

This implies that if a state is far from the ground truth, it has

high loss, otherwise small loss. We define the joint output



loss as the weighted sum of losses for object localization

and state estimation

∆(z, z′) = γ∆y(y,y′) + (1 − γ)∆x(x,x′) (8)

with 0 ≤ γ ≤ 1 balancing the two terms.

2.3. Cutting Plane Algorithm

When training the model with continuous outputs, the

number of constraints is infinite, and it is infeasible to solve

the optimization (2) for all the constraints. Fortunately, the

maximum margin loss has a sparsity-promoting effect, with

most constraints inactive in the final solution. The cutting

plane algorithm creates a nested sequence of successively

tighter relaxations of the original optimization problem and

finds a small set of active constraints that ensures a suffi-

ciently accurate solution—a practical training method (see

our fig. 1a). The algorithm starts with an empty working set

S = ∅ of constraints. At each iteration, it finds the most

violated constraint for the i-th training input

zi = argmaxz∈Z{∆(zi, z)+ (9)

+
1

N

∑

Z∈S

αZ

N
∑

j=1

[K(rj , zj , ri, z) − K(rj , zj , ri, z)]}

If the amount of violation exceeds the current value of the

slack variable ξ by more than ǫ, the potential support vector

Z = (z1, . . . , zN ) is added to the working set S = S ∪
Z. After the working set is updated, the optimization (2) is

solved in the dual with constraints Z ∈ S

min
α≥0

1

2

∑

Z∈S

∑

Z′∈S

αZαZ′H(Z,Z′) −
∑

Z∈S

∆(Z)αZ

s.t.
∑

Z∈S

αZ = C (10)

where

∆(Z) =
1

N

N
∑

j=1

∆(zj , zj) (11)

and

H(Z,Z
′
) =

1

N2

N
∑

i=1

N
∑

j=1

[K(ri, zi, rj , zj)− (12)

− K(ri, zi, rj , z
′
j) − K(ri, zi, rj , zj)+

+ K(ri, zi, rj , z
′
j)]

The algorithm stops when no violation is larger than the de-

sired precision ǫ. Notice that at the first iteration, the set

of constraints S is empty, hence the second term in the op-

timization problem (9) vanishes—in this case finding the

most violated constraint simplifies to maximizing the loss

∆(zi, z)with respect to the output z. Unlike the n-slack for-
mulation, the dual problem for the 1-slack usually remains

compact, as only a single constraint is added per iteration.
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Figure 1. (a, Left) Size of the active constraint set (i.e. the number

of support vectors) as function of iteration. The number of support

vectors saturates at about 80 iterations, indicating convergence of

the cutting plane algorithm. Notice that support vectors (points

with non-zero dual variables) in the 1-slack formulation are linear

combinations of multiple examples and no longer correspond to a

single training data point. (b, Right) Number of function evalua-

tions for the branch-and-bound algorithm in the training stage of

a joint structural SVM, based on bag-of-words SIFT (image size

640 × 480). Notice that the number of function evaluations is

significantly higher during some of the iterations compared to the

others, confirming that the hardness of search is closely linked to

the structural SVM parameters, w.

2.4. Constraint Generation

For clarity, in the sequel we rewrite the equation (9) with

the bounding box and state/pose variables

(yi,xi) = argmax(y,x)∈(Y,X){γ∆y(y,y′)+

(1 − γ)∆x(x,x′)+

+
1

N

∑

(Y,X)∈(Y N ,XN )

α(Y,X)

N
∑

j=1

[K(rj ,yj ,xj , ri,y,x)−

−K(rj ,yj ,xj , ri,y,x)]}
(13)

In the cutting plane algorithm, the dual optimization is a

constrained convex quadratic program and does not change

as a function of the joint kernel. However the maximization

of constraints heavily depends on its choice. Here we con-

sider two types of optimizations: one that searches only in

the space of poses, the other that searches jointly.

In the first scheme, we assume that ground truth bound-

ing boxes are available (annotated by people or other al-

gorithms) both in training and testing. Hence, we opti-

mize (13) only with respect to the state/pose in the con-

straint generation step. This assumption is feasible in many

settings, e.g. controlled lighting environments where good

background subtraction is available. Notice that we do not

limit the bounding box to a rectangular region—it can be

an image region with any shape. The optimization problem

(13) depends on the choice of state kernel. For instance,

for the Gaussian, it is necessary to solve a nonlinear op-

timization problem (linear kernels induce far simpler op-

timizations, but are substantially less accurate). Here, we

optimize (13) using a BFGS quasi-Newton method with cu-



bic polynomial search for the optimal step size. In training,

we initialize using randomly chosen samples from the train-

ing set in order to diversify the support vectors. In testing,

we initialize with prediction given by (unstructured) support

vector regression based on models independently trained for

each output dimension.

In the second scheme, we search for the bounding box

and state jointly. The joint search helps because training

data with similar states/poses can make a larger contribu-

tion to the location than those with dissimilar images. In

particular, we maximize (13) using alternate optimization

with both exact and greedy components: in one round we

fix the bounding box y and find the pose x using a BFGS

optimizer; in the next round, we fix the pose x, and find

the bounding box y using branch-and-bound or sliding win-

dow search. We use sliding windows here because although

good bounds can be derived for bag-of-words models, effi-

ciently bounding the image component of the cost is not al-

ways straightforward for features extracted on regular-grids

(e.g. HOG or block SIFT). For testing, we initialize the lo-

calization solution (bounding box) with prediction given by

a structural SVM trained for object localization. State ini-

tialization is performed as in the first scheme, using predic-

tors independently trained for each state/pose dimension.

Although branch-and-bound is guaranteed to find the global

optimum, it can be rather inefficient in training for some

data samples and parameter vectors w (these naturally

change, and this modulates the search in the cutting plane

algorithm). Although the empirical computational cost of

branch-and-bound for object detection was found, in prac-

tice, to be O(M2) for M × M images [20], its efficiency

depends on the parameter vector and can turn to O(M4) in
the worst case (see also our fig. 1b).

3. Experiments

We performed several experiments at graded levels of

complexity in order to test the components of the model. We

illustrate the reconstruction of 3d human motion in monocu-

lar video, both in the HumanEva benchmark [25], for which

3d ground truth is available, and using images of people

captured in real world environments, with complex back-

grounds and uncontrolled human poses.

Features and State Representation: We consider two ap-

pearance features: block SIFT and bag-of-words SIFT, both

extracted from 8× 8 pixel cells and normalized by four dif-

ferent groups of 2 × 2 cells. We include both contrast sen-

sitive and insensitive features [12], where the gradient ori-

entations in each cell are encoded using two different quan-

tization levels into 18 (00 − 3600) and 9 orientation bins

(00−1800), respectively. This leads to a 4×(18+9) = 108-
dimensional feature vector. In practice, we use a 31-d

analytic projection of the full 108-d feature vectors, with

27 dimensions corresponding to different orientation chan-

nels (18 contrast sensitive and 9 contrast insensitive), and

4 dimensions capturing the overall gradient energy in four

blocks of 2 × 2 cells. For the block SIFT (used in con-

junction with our sliding window-based search), the fixed

48 × 128 detection window is represented by 6 × 16 cells,

to make a 2976-d feature vector per detection window. For

the bag-of-words SIFT feature (used in conjunction with

our branch-and-bound search), the 100,000 randomly cho-

sen descriptors are used to generate a codebook with 1000

clusters, learned by k-means (descriptor size 1000).

Each type of descriptor (regular grid versus bag of

words) offers certain advantages: block SIFT has been

shown to give some of the best results for pose prediction

or detection in the past, but is less amenable to constructing

efficient bounding functions. In turn, bag-of-features mod-

els tend to perform less well for prediction or detection, but

are easier to bound (see later discussion).

Three-dimensional human poses (output x) are repre-

sented as 60d vectors of three-dimensional body joint po-

sitions (20 markers each with r, x and z coordinates) using

’torsoDistal’ as root. All poses are preprocessed by sub-

tracting the root joint from all the other body joint positions.

Datasets: We use two datasets with 3d ground truth. One is

HumanEva [25] which has relatively simple backgrounds,

the other is a dataset constructed by us where we’ve auto-

matically placed a synthetic impostor on real images. The

HumanEva-I dataset [25] consists of 3 subjects performing

several predefined actions, such as box, jogging, walking,

etc. Table 1 summarizes the characteristics of the dataset

used. We divided each video sequence (corresponding to

each motion of each subject) into approximately two equal

parts: the second half is the training set, and the first half

the test set, as suggested by [25].

Action S1 S2 S3 TrSet TeSet Total

Box 502 464 933 945 944 1889

Jogging 439 795 831 1033 1032 2065

Walking 1176 876 895 1474 1473 2947

Table 1. Size of dataset for block SIFT features on HumanEva-1.

S1, S2 and S3 denote Subject 1, Subject 2 and Subject 3, respec-

tively. TrSet and TeSet refer to the training and test sets. Notice

that the size of the dataset is smaller than the number of image

frames, as invalid mocap frames are removed.

The prediction error is the Euclidean distance between

the estimated joint center and the true center averaged over

all joints, per frame [25]: Errseq = 1
T

∑T

i=1 D(xi,xi)
where T is the length of sequence and D(xi,xi) =
1
M

∑M

j=1 ‖mj(xi)−mj(xi)‖, where mj(xi) ∈ R
3 extracts

the three dimensional coordinates of the jth joint center, M

is the number of the centers, and ‖·‖ the Euclidean distance.



The second database of quasi-real images was created by

us in order to train with more challenging scenes and back-

grounds. We started with images from the INRIA pedes-

trian dataset. In order to diversify the training data, we

rendered and inserted a synthetic graphics ‘impostor’ for

which 3d poses were known. To partially automate the pro-

cess, and make sure the results have as realistic a distribu-

tion as possible in terms of relative scales, sizes, location

of ground plane, etc., we run a person detector on images

and add our impostor at a similar scale and in the vicinity

of detections, properly placed according to estimates of the

ground plane [15]. A few samples are shown in fig. 2. This

training setting provides a certain degree of automation, but

still requires visual inspection and manual cleanup. Other

complementary technologies and sensors may soon become

available for more realistic acquisition of 3d human motion

data in the real-world, as encouragingly reported in [31].

Figure 2. Images from our dataset. The skeleton was rendered us-

ing poses from motion capture. The size and location of the object

was automatically computed based on person detection results.

To give intuition on why structSVM is suitable to pose

estimation, we show correlation coefficients for human

walking and jogging motions in fig. 3. Entries are com-

puted as: ρij = cov(yi,yj)√
cov(yi,yi)cov(yj ,yj)

where cov(·, ·) is the
covariance between two random variables. The light, highly

correlated off-diagonal components indicate non-negligible

coupling between the state variables (3d joint positions).

In a first experiment, given in tables 2 and 3, we re-

port the average joint position error of RVM (relevance

vector machine), GPR (Gaussian process regression), SVR

(support vector regression), HME (mixture of experts) and

structural SVM models, for the simpler case of bounding

boxes obtained using background subtraction. structSVM

is consistently better for both activity-specific models and

for generic models that were trained jointly (20% improve-

ment on walking motions, compared to the best performing

method, HME).

In the second set of experiments, we consider integrated

methods for localization and pose estimation in HumanEva,

without assuming knowledge of the background, hence

without relying on background subtraction for person de-

tection. We use two types of search methods for localiza-

tion (bounding box search): branch-and-bound and sliding
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Figure 3. Matrices of correlation coefficients for block SIFT fea-

tures collected on a regular grid inside the object bounding box

(top) and 3d poses (bottom) (60d vectors of temporally ordered

three dimensional body joint positions). Left: boxing. Right: com-

bined boxing + jogging + walking motions. Notice non-negligible

correlations among both inputs and outputs.

Motion RVM GPR SVR HME structSVM

Box 69.2 67.8 64.2 63.5 60.6

Jogging 66.3 65.9 63.2 58.5 53.9

Walking 59.1 58.9 61.5 55.9 45.4

Table 2. Models trained on each motion of each subject. The de-

scriptor is block SIFT extracted on a regular grid inside the person

bounding box. ’C1’ means that the image feature is extracted from

images captured by the first color camera. Error, in mm, is aver-

aged over the same motion of three subjects.

Motion RVM GPR SVR HME structSVM

Box 71.5 71.6 70.9 67.5 63.2

Jogging 62.3 62.3 59.2 53.4 47.6

Walking 66.1 66.0 63.1 58.7 46.3

Table 3. Activity specific models, trained on the same motion of all

subjects. The descriptor is block SIFT extracted on a regular grid

inside the person’s bounding box, divided into a 6 × 5 cell grid,

with gradients in each cell quantized into 9 orientation bins (00
−

180
0) (descriptor of size 270). ’C1’ means that the features are

extracted from images captured by the first color camera. Error, in

mm, is averaged over the same motion of three subjects.

windows. For branch-and-bound, we use the bag-of-words

SIFT model. For sliding windows, we use block-SIFT fea-

tures extracted within a fixed detection window, and search

the object over ten different image scales.

In one experiment, we first locate the human using a

structural SVM trained for detecting people then estimate

the 3d pose using a second, separately trained structural

SVM with the given bounding box as input. In a second

experiment, we learn and infer the person location and the

3d pose jointly. Our first finding is that the detection rate



is 100% both for the separately trained model (second ex-

periment) and for the jointly trained model. The detection

rate is computed as correct localization, where bounding

boxes were considered correct if their area overlap with

ground truth exceeded 50%. Hence both methods appear to

have learned that many images share similar backgrounds.

While this may not seem entirely remarkable, it is still non-

trivial, considering how much attention background sub-

traction and shadow removal methods receive in almost any

task where their usage is applicable—knowing the back-

ground makes a big difference in practice, see also our third

finding.

Our second finding is that the jointly trained model is

consistently 8% better than the separately trained model for

3d pose estimation in all the cases, very likely because of

improved window localization. Our third finding is that

the jointly trained model has similar (albeit slightly lower)

performance w.r.t. the structSVM where the bounding box

was given (e.g. tables 2 and 3). This is not surprising since

background subtraction also exploits temporal information

whereas our jointly trained model didn’t (this would be easy

to include, as an additional kernel linking states at succes-

sive timesteps, not just observations and states at a given

timestep). However, our model works even when we have

to estimate pose for a disparate set of images rather than a

video (our next experiment).

We run two types of structural SVM models on the

quasi-real dataset using block SIFT features, sliding win-

dow search for object localization, and gradient descent

search for the remaining state components (human joint

variables). In the first experiment, we initially locate the

person using structural SVM for object location, then esti-

mate the 3d pose based on the resulting bounding box. In

the second experiment, we perform localization and 3d pose

estimation jointly.

The error in the 3d position of the articulations for the

jointly trained model is 62.3 mm on this dataset, lower than

67.6 mm obtained by the separately trained model. The de-

tection rate of the jointly trained model is about 3% bet-

ter than that of the separately trained model. Beside block

SIFT, we also run two types of structural SVM models us-

ing bag of words SIFT and branch-and-bound for person

localization. In this case, as well, the jointly trained model

achieves better performance than the one trained separately.

We also found that structural models based on bag-of-words

SIFT underperformed those trained using block SIFT, per-

haps because the former does not encode spatial informa-

tion.

Sample localization and 3d reconstruction results ob-

tained by our structural SVM model, trained on the quasi-

real dataset and tested with complex images, are shown in

fig. 4. Various types (and degree) of failure of the model

are shown in fig. 5. Clearly these leave ample space for

Joint Position Error Detection Rate

Feature Separate Joint Separate Joint

BlockSIFT 67.6 62.3 84.8% 87.2%

HistoSIFT 81.2 75.9 78.6% 81.1%

Table 4. Comparisons of separately and jointly trained structSVM

models in the quasi-real dataset (joint position error in mm).

improvement in detection quality, pose prediction accuracy,

and general large-scale reliability. However, we appreciate

that the integrated model provides conceptual advantages

and a formal unifying framework to explore alternative fea-

ture types, bounding functions, as well as inference and

training procedures.

4. Conclusions

We have presented an integrated continuous structured

prediction model for joint visual object localization and

state estimation. This offers an end-to-end training and in-

ference framework that overcomes the limitations of regres-

sive methods, as it consistently searches for both the loca-

tion of the object is in the image and for its state. This

is achieved by combining global inference methods like

branch-and-bound with greedy (gradient descent) search in

an alternation scheme. The method comes in contrast to

previously proposed techniques that assume the inputs have

already been selected at run-time. We illustrate the cam-

pabilities of this framework through a graded set of local-

ization and 3d human pose reconstruction experiments in

monocular images, both in the HumanEva benchmark, and

in images of complex scenes captured in the real world.

Future work: We actively study alternative inference tech-

niques based on branch-and-bound for both image and state

search, as well as the design of bounding functions for im-

age descriptors computed on regular grids.
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