
Int J Comput Vis (2010) 87: 28–52
DOI 10.1007/s11263-008-0204-y

Twin Gaussian Processes for Structured Prediction

Liefeng Bo · Cristian Sminchisescu

Received: 22 July 2008 / Accepted: 24 December 2008 / Published online: 12 February 2009
© Springer Science+Business Media, LLC 2009

Abstract We describe twin Gaussian processes (TGP), a
generic structured prediction method that uses Gaussian
process (GP) priors on both covariates and responses,
both multivariate, and estimates outputs by minimizing the
Kullback-Leibler divergence between two GP modeled as
normal distributions over finite index sets of training and
testing examples, emphasizing the goal that similar inputs
should produce similar percepts and this should hold, on av-
erage, between their marginal distributions. TGP captures
not only the interdependencies between covariates, as in a
typical GP, but also those between responses, so correlations
among both inputs and outputs are accounted for. TGP is ex-
emplified, with promising results, for the reconstruction of
3d human poses from monocular and multicamera video se-
quences in the recently introduced HumanEva benchmark,
where we achieve 5 cm error on average per 3d marker for
models trained jointly, using data from multiple people and
multiple activities. The method is fast and automatic: it re-
quires no hand-crafting of the initial pose, camera calibra-
tion parameters, or the availability of a 3d body model asso-
ciated with human subjects used for training or testing.

Keywords Structured prediction · Gaussian processes ·
3d human pose reconstruction · Feature extraction · Video
processing

L. Bo
TTI-Chicago, Chicago, IL 60637, USA
e-mail: blf0218@tti-c.org

C. Sminchisescu (�)
University of Bonn, INS, Bonn 53115, Germany
e-mail: cristian.sminchisescu@ins.uni-bonn.de

1 Introduction

We study structured prediction problems inspired by com-
puter vision, where we wish to predict a multivariate out-
put from a multivariate input and a joint training set. Here,
the input is the image or its descriptor (e.g. a ‘bag of
words’ histogram model that quantizes the occurrence of
a feature over the image, for instance a local edge distri-
bution) and the output is a scene representation, an object
shape or a three-dimensional human pose. Both the inputs
and the outputs are high-dimensional and strongly corre-
lated. At basic level, image features are spatially coherent
(nearby pixels more often have similar color, contrast or
edge orientation than not), whereas outputs are structured
due to physical constraints in the world. For example three-
dimensional human poses are constrained at scene level by
the ground plane and the location of typical objects, at phys-
ical level by gravitation, equilibrium and joint/body limits,
and at functional level by the strong body part correlations
in motions like walking, running, jumping that have regu-
lar or periodic structure, hence, at least locally, low intrin-
sic dimensionality. Given the recent availability of train-
ing data (CMU 2003; Sigal and Black 2006), there has
been increasing interest in example-intensive, discriminative
approaches to 3d human pose reconstruction, either based
on nearest-neighbor schemes (Shakhnarovich et al. 2003;
Poppe 2007) or parametric predictors (Rosales and Sclaroff
2002; Agarwal and Triggs 2006; Sminchisescu et al. 2007),
trained using images of people and their corresponding 3d
ground truth pose. A shortcoming of existing methods is
their inability to model interdependencies between outputs.
Our work aims to improve the modeling of output corre-
lations by using Gaussian processes and a new prediction
criterion.

mailto:blf0218@tti-c.org
mailto:cristian.sminchisescu@ins.uni-bonn.de

Int J Comput Vis (2010) 87: 28–52 29

While Gaussian processes (Rasmussen and Williams
2006) are powerful tools for modeling non-linear depen-
dencies, being potentially relevant for pose reconstruction,
most GP models focus on the prediction of a single out-
put. Although generalizations to multiple outputs can be
derived by training independent models for each one or ty-
ing parameters across dimensions, this fails to account for
output correlations in the final predictive model (Weston et
al. 2002). This motivates our TGP method that encodes the
relations between both inputs and outputs using GP priors.
Since samples from two Gaussian processes reflect marginal
similarities among them, the idea is to match distributions
of inputs and outputs as well as possible. For vision, this
emphasizes the objective that similar images should lead to
similar 3d percepts. More robustly, generalizing to training
and testing ensembles, we wish distributions of similar in-
puts and similar percepts to be close, hence the property to
hold on average. Formally, this is achieved by minimizing
the Kullback-Leibler divergence between the marginal GP
of outputs and observations, both modeled as normal distrib-
utions over sets of finite training/testing (i.e. example/query)
indices.

1.1 Related Work

Structured Prediction. Research in discriminative learn-
ing has recently focused on structured methods that ex-
ploit complex internal dependencies among outputs in or-
der to improve prediction. Although the majority of meth-
ods address the classification case (Lafferty et al. 2001;
Taskar et al. 2004; Tsochantaridis et al. 2004), structured
regression has received increasing attention, due to its wide
potential applicability. Weston et al. (2002) proposed Ker-
nel Dependency Estimation, where internal dependencies
among outputs are captured using kernel principal com-
ponent analysis, and an input to kernel space mapping is
learned for each (uncorrelated) kernel principal dimension
separately, using ridge regression. Prediction works by map-
ping to kernel space using the learned regression model, then
solving a pre-image problem to recover the result in the out-
put coordinate system. Cortes et al. (2005) give a concep-
tually cleaner reformulation of kernel dependency estima-
tion, based on a closed-form solution, where kernel principal
component analysis is no longer explicitly required and pre-
diction is made by analytically optimizing a more complex
cost function. Along the lines of Cortes et al. (2005), Geurts
et al. (2006, 2007) study methods to kernelize the output of
regression trees and extend them to ensembles within a gra-
dient boosting framework. Continuous value structured pre-
diction based on both spatial (per timeframe) and temporal
(across timeframes) dependencies has been pursued in the
probabilistic BM3E framework (Sminchisescu et al. 2005,
2007), which uses conditional mixture of experts (Bayesian

regressors or kernel dependency estimators) for spatial pre-
diction and conditional Markov chains for temporal fusion.

Distribution divergence measures have recently been in-
tegrated within cost functions for dimensionality reduction.
Stochastic neighbor embedding (SNE) (Hinton and Roweis
2002; Memisevic 2006) explicitly computes the probabil-
ity of distances between points in data space and estimates
low-dimensional, latent coordinates, by matching the corre-
sponding distributions. The Gaussian Process latent variable
model (GPLVM) (Lawrence 2005) can also be interpreted
as minimizing the KL-divergence between data and latent
distributions with respect to the latent variables. However,
the methods are designed for dimension reduction, a differ-
ent problem than supervised learning, as considered here.1

Unlike existing methods, TGP explores the use of Kullback-
Leibler divergence in a supervised setting in order to make
predictions in a structured output space.

An alternative is to view the Kullback-Leibler diver-
gence as one possible dependence measure that gives the
‘goodness of alignment’ between two kernels. Along these
lines, in Sect. 3 we comparatively analyze predictive strate-
gies based on other two frequently used kernel dependency
measures: kernel target alignment (KTA) (Cristianini et al.
2001a, 2001b) and the Hilbert-Schmidt independence crite-
rion (HSIC) (Gretton et al. 2005a, 2005b). We also exten-
sively compare KTA, HSIC and TGP empirically, and show
that TGP is significantly more accurate than either KTA or
HSIC.

In recently published work, temporally overlapping with
our initial introduction of TGP (Bo and Sminchisescu 2008),
Guzman and Holden (2007) also refer to their GP regres-
sion method based on a binary switching noise model as
‘twinned’, but this is very different from the model and goals
of TGP. Guzman & Holden’s method (2007) can be viewed
as a particular instantiation of a two-component GP mix-
ture model with tied kernel parameters and different noise
outputs—an instance of the general mixture of GP model
of Tresp (2000). Both methods are interesting in their own
right, but are substantially different in scope and implemen-
tation from the structured prediction goal and cost functions
used here. Name similarities are purely coincidental.

3D Human Pose Reconstruction. Given the vastness of the
topic, this subsection only highlights research in 3d human
pose reconstruction without aiming at a full literature re-
view. Work in 3d human pose reconstruction has focused
on both generative and discriminative methods. Generative

1Formally, these can be viewed as optimizing a reversed relative en-
tropy with linear output kernel as opposed to TGP, which uses regular
relative entropy with non-linear output kernel. ‘Regular’ and ‘reverse’
should be understood as polar options, not qualifiers—both choices can
be justified, problem depending.

30 Int J Comput Vis (2010) 87: 28–52

methods model the joint distribution of states and obser-
vations using, most frequently, an observation model and
a state prior, and compute state conditionals using (an of-
ten expensive) Bayesian inversion. The key components of
generative methods are the inference algorithm, the state
prior and the observation model. It is essential both to build
an observation model that peaks in regions corresponding
to correct percepts in state space, and then find those re-
gions efficiently—ideally the two processes should be syn-
chronized in training (Roth et al. 2004; Sminchisescu and
Welling 2007). Successful search algorithms include an-
nealing (Neal 1998; Deutscher et al. 2000; Sidenbladh et
al. 2000), hybrid Monte-Carlo and Hyperdynamic sampling
(Duane et al. 1987; Choo and Fleet 2001; Sminchisescu and
Triggs 2002b) or covariance and kinematic sampling (Smin-
chisescu and Triggs 2001, 2003). Observation models in-
clude edge and silhouettes (Deutscher et al. 2000), inten-
sity based on learned features (Sidenbladh and Black 2001;
Roth et al. 2004) or consistent silhouette likelihoods based
on bidirectional attraction/overlap terms, as first proposed
by Sminchisescu (2002), Sminchisescu and Telea (2002).
State priors include dedicated activity models (e.g. walk-
ing, running) (Deutscher et al. 2000; Sidenbladh et al.
2000; Wang et al. 2008), physical models (Brubaker and
Fleet 2008; Vondrak et al. 2008), nearest-neighbor dynamics
(Sidenbladh et al. 2000) and non-linear latent variable mod-
els (Sminchisescu and Jepson 2004a; Urtasun et al. 2005;
Li et al. 2006; Kanaujia et al. 2007). Discriminative meth-
ods focus on modeling only the conditional state distrib-
ution or, in non-probabilistic cases, its point estimates. Of
importance is the design of the image descriptor, the choice
of output representation and the predictor. A variety of de-
scriptors based on hierarchical feature design and metric
learning methods has been studied in Agarwal and Triggs
(2006), Sminchisescu et al. (2007), Kanaujia et al. (2006).
Discriminative predictors based on either nearest-neighbors
(Shakhnarovich et al. 2003), sparse regression (Agarwal and
Triggs 2006), mixture of neural nets (Rosales and Sclaroff
2002), or conditional Bayesian mixtures of experts with
temporal smoothness constraints (Sminchisescu et al. 2007;
Bo et al. 2008) have been demonstrated to produce com-
petitive results automatically. The combination of discrim-
inative and generative models is promising and several au-
thors have started to study it recently: Sminchisescu et al.
(2006) jointly learn coupled generative-discriminative mod-
els in alternation and integrate detection and pose estimation
in a common sliding window framework, whereas Sigal et
al. (2007) focus on human body surface models, estimated
by combining discriminative prediction and verification, us-
ing particle filters.

To conclude, there has been significant progress in 3d hu-
man pose recovery, both conceptually—understanding the
limitations of existing likelihood or search algorithms, and

deriving improved procedures and conceptually new mod-
els and image features to overcome them—and practically,
by building systems that can reconstruct shape and perform
fine body measurements from images (Sigal et al. 2007),
recover 3d human motion from multiple views (Deutscher
et al. 2000; Kehl et al. 2005) or reconstruct from com-
plex monocular video footage like dancing or movies, e.g.
Run Lola Run (Sminchisescu and Triggs 2003; Kanaujia
et al. 2006). The current paper consolidates this conclusion
by demonstrating that a novel structured discriminative ap-
proach achieves promising results for reconstructing 3d hu-
man motion in the HumanEva benchmark (5 cm error per
body joint are obtained, on average). The method, which
is trained using data from all subjects and all motions, is
fast and automatic: it requires no initialization of the human
pose, no camera calibration and no knowledge of the body
shape parameters of the human subjects during training, or
their identity for testing.

Organization. Beyond the current introduction and related
work Sect. 1, the paper is structured as follows: Sect. 2
presents the Twin Gaussian Process model (TGP) with
both its static (Sect. 2.2) and dynamic versions (Sect. 2.3)
(DTGP), and discusses methods for speeding up inference
based on nearest neighbors (Sect. 2.4); Sect. 3 analyzes ker-
nel alignment methods and contrasts their cost function and
empirical prediction accuracy with the ones of TGP; Sect. 4
presents extensive comparative experiments using the Hu-
manEva datasets, where we test several methods including
K-nearest neighbors (KNN), Gaussian Process Regression
(GPR), static and dynamic Twin Gaussian processes, TGP
and DTGP as well as kernel alignment methods based on
the Hilbert Schmidt independence criterion (HSIC), and the
Kernel Target Alignment method (KTA).

2 Twin Gaussian Process Model

In structured discriminative prediction, we are given a
set of inputs (e.g. for vision, image observations) R =
(r1, r2, . . . ,rN) and a set of the corresponding multivariate
outputs (for vision, e.g. 3d pose vectors) X = (x1,x2, . . . ,

xN), with dim(x) = D. Here, R stores the image observa-
tions and X the output vectors columnwise, e.g. dim(X) =
D × N . The goal is to infer the multivariate output given
an input. Since this fits, in principle, the classical regression
problem, existing algorithms such as k nearest neighbor re-
gression and Gaussian process regression can be applied,
for a start. In the next sections we briefly review Gaussian
Process Regression (GPR), identify its limitations for struc-
tured prediction, and describe a family of methods referred
to as Twin Gaussian Processes (TGP), to address these.

Int J Comput Vis (2010) 87: 28–52 31

2.1 Gaussian Process Regression (GPR)

A Gaussian process is a collection of random variables, any
finite number of number of which have a joint Gaussian
distribution. For Gaussian process regression (GPR), the
random variables represent the value of the function f (r)
for inputs r. GPR assumes f (r) is a zero mean stationary
Gaussian process with covariance function k(ri , rj), encod-
ing correlations between pairs of random variables:

cov
(
f (ri), f (rj)

)= KR

(
ri , rj

)
(1)

One covariance function particularly used is the Gaussian,
e.g.: KR(ri , rj) = exp(−γr‖ri − rj‖2) + λrδij , with γr ≥ 0
the kernel width parameter, λr ≥ 0 the noise variance and δij

the Kronecker delta function, which is 1 if i = j , and 0 oth-
erwise. This kernel function prior constrains input samples
that are nearby to have highly correlated outputs.

However, most often we are not interested in drawing
random functions from the prior, but to incorporate the con-
straints from training data. According to the prior, the joint
distribution of observed outputs and an unknown test output
x corresponding to a given input r is:

[
(X(d))�

x(d)

]
∼ NR

(
0,

[
KR Kr

R

(Kr
R)� KR(r, r)

])
(2)

where X(d) is the d th row of X and x(d) is the d th entity of
x, KR is a N × N matrix with (KR)ij = KR(ri , rj) and Kr

R

is a N × 1 column vector with (Kr
R)i = KR(ri , r).

To obtain a meaningful posterior, we have restricted the
joint distribution to contain only those functions that are
consistent with the observed output. Because the joint is
Gaussian, the predictive distribution obtained by condition-
ing on the observed output, p(x(d)|(X(d))�) is also Gaussian
with mean and variance given by:

m(x(d)) = X(d)K−1
R Kr

R, (3)

σ 2(x(d)) = KR(r, r) − (Kr
R)�K−1

R Kr
R (4)

Hence, we infer an output given a test input r, using the
mean (3) of the predictive distribution.

2.2 Twin Gaussian Processes (TGP)

Gaussian process regression (Rasmussen and Williams
2006) is a standard method to model non-linear input-output
dependencies, but it only focuses on the prediction of a sin-
gle output. Although generalizations to multiple outputs can
be derived by training independent models for each, this
fails to leverage information about correlations among out-
put components in the predictor (Weston et al. 2002).

Another potential limitation is that GPR cannot handle
the multiple solutions corresponding to plausible scene in-
terpretations that frequently occur in hard, inverse 3d from
2d monocular vision problems like pose reconstruction. This
gets further complicated in the articulated case (Lee and
Chen 1985; Morris and Rehg 1998; Deutscher et al. 2000;
Sidenbladh et al. 2000; Choo and Fleet 2001; Sminchisescu
and Triggs 2002a, 2003; Sminchisescu and Jepson 2004b).
One effective way to deal with ambiguity (multivaluedness)
arising in perceptual, 3d from 2d inference problems, is
to use mixture of experts or their conditional counterparts
(Rosales and Sclaroff 2002; Sminchisescu et al. 2007). Such
models are more complex to train and provide a multiplic-
ity of solutions that can be either ranked using gating func-
tions or verified using an observation model (such models
have achieved state-of-the art results in HumanEva (Bo et
al. 2008)).

While certain (monocular) ambiguities are intrinsic to the
problem and appear to be to a large extent unavoidable us-
ing current technology,2 in this work we aim to make 3d
percepts less ambiguous through a synergy of expressive
image features (we use the current state-of-the art in or-
der to balance the delicate trade-offs of selectivity and in-
variance), aggressive use of prior knowledge, dynamics (if
sequences rather than single images are available) and im-
proved search. Thus, we consider a ‘controlled hallucina-
tion’ setting, and study search based structured prediction
and density-sensitive costs that focus on the strongest mode,
carrying most of the probability mass in the output distrib-
ution. Since covariance functions can encode spatial corre-
lations explicitly, we define covariance functions over out-
puts in a similar way these were defined over inputs in a GP.
This extends existing methods with models of output corre-
lations.

To fix ideas, we first consider an alternative view to
Gaussian processes. Since

[
(X(d))�

x(d)

]
is a sample from a

Gaussian distribution (2), NX(0,KX
⋃

x) where we can es-
timate the covariance matrix as:

KX
⋃

x =
[
(X(d))�

x(d)

][
X(d) x(d)

]

=
[
(X(d))�X(d) (X(d))�x(d)

X(d)x(d) x(d)x(d)

]
(5)

In perception problems, we wish similar inputs to produce
similar percepts. Since we know the true Gaussian distri-
bution of the inputs NR , we measure the offset between
the estimated Gaussian distribution of outputs, including a
new target, and the homologous input distribution, using
Kullback-Leibler divergence:

DKL(NX ‖ NR) = −N

2
− 1

2
log

∣∣KX
⋃

x
∣∣

32 Int J Comput Vis (2010) 87: 28–52

+ 1

2
Tr

{
KX

⋃
x

[
KR Kr

R

(Kr
R)� KR(r, r)

]−1}

+ 1

2
log

∣∣∣
∣

[
KR Kr

R

(Kr
R)� KR(r, r)

]∣∣∣
∣ (6)

The Kullback-Leibler divergence is always non-negative
and zero if and only if the two Gaussian distributions have
the same covariance. However, the output x(d) is unknown in
this measure. To match the estimated output distribution and
the fully observed input one, we estimate output targets (test
data) by minimizing the Kullback-Leibler divergence (6):

x∗ = arg min
x(d)

[L(x(d)) ≡ DKL(NX ‖ NR)] (7)

2View of Monocular Ambiguities. Reconstructing articulated 3d pose
from monocular model-image point correspondences is certainly am-
biguous, according to geometric (Lee and Chen 1985; Morris and
Rehg 1998; Sminchisescu and Triggs 2003) and computational studies
(Deutscher et al. 2000; Sidenbladh et al. 2000; Choo and Fleet 2001;
Sminchisescu and Triggs 2002a, 2002b; Rosales and Sclaroff 2002;
Sminchisescu et al. 2007) of the problem. For other image features and
volumetric models, the problem may be more difficult to analyze geo-
metrically, but poses that correspond to reflective placements of limbs
w.r.t. the camera rays of sight produce only marginally different image
projections, with comparable likelihoods, even under similarity mea-
sures based on sophisticated image features (see Deutscher et al. 2001;
Sidenbladh et al. 2002; Sminchisescu and Triggs 2002a and computa-
tional studies in Deutscher et al. 2000; Sminchisescu and Triggs 2002a,
2005; Sidenbladh and Black 2001; Rosales and Sclaroff 2002; Smin-
chisescu et al. 2007). Subtle differences do exist between the ‘close-
in-depth’ and ‘far-in-depth’ configurations, but these would give the
‘true’ pose some margin only for perfect subject models and image
features with no data association errors (it remains unclear under what
circumstances this can happen). In principle, shadows can offer supple-
mentary cues, but the key relevant regions seem to be hard to identify
in scenes with complex lighting and for unknown people wearing de-
formable clothing. Even so, different solutions become practically in-
distinguishable for objects placed further away in depth from the cam-
era. It should also be clear that in a sufficiently general model com-
plexity class, monocular ambiguities can persist in an image sequence,
when dynamic constraints are considered (Sminchisescu and Jepson
2004b), and can also persist for models constrained using prior knowl-
edge (Sminchisescu and Jepson 2004a; Rosales and Sclaroff 2002;
Sminchisescu et al. 2007) (for illustrations of both static and dynamic
ambiguities, see videos at http://sminchisescu.ins.uni-bonn.de/talks/).
In the long run, a combination of low-complexity models and appro-
priate context management may produce solutions—effectively ‘con-
trolled hallucinations’—that are unambiguous in their class rather than
in general. This may turn out to be more effective than a hardline
bottom-up approach, where every bit of uncertainty is expelled by ju-
diciously analyzing all ‘cues’. In fact, the belief that vision can still
proceed despite extensive sets of ambiguities (e.g. bas-relief, pictor-
ial depth, structure-from-motion) is not foreign to researchers in both
computer vision and psychophysics (Koenderink and van Doorn 1979;
Koenderink 1998; Battu et al. 2007). Notwithstanding, the reader
should be aware that we do not only design models that can repre-
sent several structured solutions, but also employ complex state-of-
the-art image features (HMAX, HoG) and dynamics, see e.g. Sect. 2.3
and Sect. 4, and (Sminchisescu et al. 2007; Kanaujia et al. 2006;
Bo et al. 2008). To the extent possible, no component of the system
was trivialized.

Invoking matrix determinant and matrix inverse identities
and dropping constants, we minimize (8) w.r.t. the output
vector x(d):

L(x(d)) = x(d)x(d) − 2x(d)X(d)K−1
R Kr

R

−
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

× log
{

x(d)x(d) − x(d)X(d)

× [
(X(d))�X(d)

]−1
(X(d))�x(d)

}
(8)

This prediction bears certain resemblance to the mean of a
GPR. If we drop the third term in (8) to obtain the cost:

L∼GPR(x(d)) = x(d)x(d) − 2x(d)X(d)K−1
R Kr

R (9)

we obtain a quadratic function of x(d), with analytical solu-
tion exactly the mean of a GPR (the variance is different!).

For the multivariate case, if we consider the training out-
puts along each dimension as samples and assume D sam-
ples from their Gaussian distribution (2), we can estimate
the covariance matrix KX

⋃
x as:

KX
⋃

x = 1

D

[
X�
x�

]
[
X x

]= 1

D

[
X�X X�x
x�X x�x

]
(10)

As in the 1d case discussed previously, we predict by min-
imizing the Kullback-Leibler divergence between the esti-
mated output Gaussian and the one of the inputs w.r.t. out-
put x:

L(x) = x�x − 2x�XK−1
R Kr

R

−
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

× log
[
x�x − x�X(X�X)−1X�x

]
(11)

Consider the covariance matrix (10) that depends on outputs
in the training set. If outputs along each dimension are i.i.d,
this can be a good estimate. But if the dimensional outputs
are correlated, as in the case considered here, the estimate
can be poor. In general, we want the covariance matrix to be
as much as possible sensitive to correlations between out-
puts. This justifies a model with covariance function over
outputs:

cov
(
f (xi), f (xj)

)= KX

(
xi ,xj

)
(12)

where, e.g. KX(xi ,xj) = exp(−γx‖xi − xj‖2) + λxδij , for
a Gaussian.

Using this model, we estimate the covariance matrix as

KX
⋃

x =
[

KX Kx
X

(Kx
X)� KX(x,x)

]
(13)

http://sminchisescu.ins.uni-bonn.de/talks/

Int J Comput Vis (2010) 87: 28–52 33

Based on the estimated Gaussian, we predict by minimizing
the KL divergence w.r.t. outputs:

L(x) = KX(x,x) − 2(Kx
X)�K−1

R Kr
R

−
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

× log
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]
(14)

When designing a cost function for structured prediction,
intuitively we want: (1) training input-output pairs whose
inputs are far away from the test input should make small
contributions to prediction; (2) training input-output pairs
whose inputs are near the test input but the corresponding
outputs are far away from the test output should again make
small contributions to estimates. Otherwise said, the train-
ing samples with both similar inputs and similar outputs
to a test input (and the output estimate) should contribute
significantly to the estimate. By carefully considering the
cross term in (14): (Kx

X)�K−1
R Kr

R (the first term is con-
stant for a Gaussian kernel and the third does not depend on
the test input) or its equivalent form, more convenient for
this argument:

∑N
i=1

∑N
j=1 HijKX(xi ,x)KR(rj , r), where

H = K−1
R , we see how 1) and 2) can be achieved: 1) we can

limit the impact of the training pairs that have inputs dis-
similar with the test input by setting γr large—then corre-
sponding KR(rj , r) are close to zero; 2) we can downgrade
the impact of training data with similar inputs but dissimi-
lar outputs w.r.t. the test input-output (estimate) by setting
γx large (see the third row of Fig. 2). Hence only training
data that has both similar inputs and similar outputs with the
query may dynamically2 play a key role in the final estimate.
In this respect, TGP goes beyond classical regression meth-
ods like ridge regression or Gaussian process regression,
where training data with similar inputs but dissimilar out-
puts negatively impact the estimate by pulling in contradic-
tory directions (see the second row in Fig. 2). It is also sig-
nificantly different from their ‘robust’ versions (e.g. robust
LWR) where a certain resistance to contradictory evidence
is achieved procedurally,3 rather than formally in TGP, at the
level of a cost function that is profiled for good performance
via cross-validation and hyperparameter optimization, and
where estimates are provably convergent.

Training. Learning for TGP requires the inversion of ker-
nel matrices KR and KX in (14) neither of which depend
on the test input, nor the output. Covariances of both inputs
and outputs are damped using multiplicative factors of the
identity matrix (λr, λx) in order to improve the stability of
inversion.

2The output changes during the local optimization-based inference, c.f.
(7), and so does the index set of similar outputs swept by its kernel.
3Our experience confirms earlier findings by Shakhnarovich et al.
(2003) regarding the similar performance of robust/LWR and WKNN.

Prediction. Prediction using TGP requires non-linear op-
timization of the cost (14). We use a second order, BFGS
quasi-Newton optimizer with cubic polynomial line search
for optimal step size selection. We initialize using ridge
regressors independently trained for each output. This im-
proves both the accuracy and speed of prediction compared
to random initialization (Sect. 4 studies the sensitivity of
prediction to initialization). For a given test input, we pre-
compute the terms (α and β) that do not depend on output
in order to accelerate loss function and gradient evaluations:

L(x) = KX(x,x) − 2α�Kx
X

− β log
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]
(15)

∂L(x)

∂x(d)
= ∂KX(x,x)

∂x(d)
− 2α� ∂Kx

X

∂x(d)

−
β log

[
∂KX(x,x)

∂x(d) − 2(Kx
X)�K−1

X

∂Kx
X

∂x(d)

]

KX(x,x) − (Kx
X)�K−1

X Kx
X

(16)

where α = K−1
R Kr

R and β = KR(r, r) − (Kr
R)�K−1

R Kr
R .

The gradients of kernel function depend on specific choices
—for the Gaussian used in the paper, we have ∂KX(x,x)

∂x(d) = 0
and

∂Kx
X

∂x(d)
=

⎡

⎢⎢⎢⎢
⎣

−2γx(x
(d) − x

(d)
1)KX(x,x1)

−2γx(x
(d) − x

(d)
2)KX(x,x2)
...

−2γx(x
(d) − x

(d)
N)KX(x,xN)

⎤

⎥⎥⎥⎥
⎦

(17)

Kullback-Leibler divergence being an asymmetric mea-
sure, it is natural to also consider the cost obtained by re-
versing it:

DKL(NR ‖ NX)

= −N

2
− 1

2
log

∣∣∣∣

[
KR Kr

R

(Kr
R)� KR(r, r)

]∣∣∣∣

+ log

∣∣∣∣

[
KX Kx

X

(Kr
X)� KX(x,x)

]∣∣∣∣

+ 1

2
Tr

([
KR Kr

R

(Kr
R)� KR(r, r)

]

×
[

KX Kx
X

(Kx
X)� KX(x,x)

]−1
)

(18)

Invoking matrix identities and dropping constants (detailed
derivations are given in Appendix), we obtain the cost func-
tion corresponding to an ‘inverse’ TGP (ITGP):

I (x) = −2(Kr
R)�K−1

X Kx
X + (Kx

X)�K−1
X KRK−1

X Kx
X

34 Int J Comput Vis (2010) 87: 28–52

Fig. 1 Training set for a toy problem (predict a 1d output variable
x given a 1d control r) consists of 250 values of x generated uni-
formly in (0,1), for which we evaluate r = x + 0.3 sin(2xπ)+ ε with ε

drawn from a zero mean Gaussian with standard deviation 0.05. Stars
correspond to examples where KNN and GPR suffer from ‘bound-
ary/discontinuous effects’. See also Fig. 2 for results that illustrate how
different models (KNN, GPR, TGP, ITGP) trained on this dataset be-
have when tested with 250 equally spaced inputs r in (0,1)

+
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]

× log
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]

−
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]

× log
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]
(19)

Like TGP, we make predictions by optimizing (19) w.r.t. x.
Intuitions behind different cost functions for both TGP

and ITGP are given next. Besides exploiting structured de-
pendencies between outputs, TGP/ITGP give plausible solu-
tions for ‘hard multivalue prediction problems’ where stan-
dard regression methods such as GPR do not work well. To
illustrate, we consider a multivalued 1d input-output prob-
lem, the S-shape (Bishop and Svensen 2003). In Fig. 1, we
generate a training set of 250 values of x uniformly distrib-
uted in (0,1) and evaluate r = x + 0.3 sin(2xπ) + ε with
ε drawn from a zero mean Gaussian with standard devi-
ation 0.05. For testing, shown in Fig. 2, we generate 250
equally-spaced values with x in (0,1) and evaluate r accord-
ing to the model. The goal is to predict x given r , in the
test set according to the model learned based on the training
set.

Although a toy problem, the S-shape models situations
that occur in real world applications and datasets with mul-
tivariate input-output samples, such as human pose recon-
struction, because the output: 1) is multivalued in the mid-
dle of S-shape; 2) is discontinuous on the boundary be-
tween the univalued and multivalued regions, and 3) the
training set is noisy. This epitomizes hard 3d from 2d articu-
lated pose reconstruction problems from monocular images,

where ambiguities among multiple separated regions of the
state space (Sminchisescu and Triggs 2003) compound with
range uncertainty within each (Sminchisescu and Triggs
2001), and persist even in restricted inference settings reg-
ularized by temporal (dynamic) constraints (Sminchisescu
and Jepson 2004b) or prior knowledge (Sminchisescu and
Jepson 2004a). Our experiments using complex image fea-
tures and real vision datasets show that predictors like TGP
or conditional mixture of experts models (BME and its vari-
ants) consistently outperform GPR or KNN models—for
complementary experiments see Sminchisescu et al. (2007),
Bo et al. (2008).

In Fig. 2, we study the performance of 4 learning algo-
rithms: KNN, GPR, TGP and ITGP. The 1NN method has
high variance and the highest mean absolute error. All 1-
NN estimates are on the curve or very close to it, but they
differ from the true outputs—in high-dimensional, sparsely
sampled problems with noise, this further degrades. KNN
with 5 and 10 nearest neighbors, respectively, works well
in the univalued ends of the (0,1) range, but performs er-
ratically in the multivalued zone and on the boundaries be-
tween univalued and multivalued regions. Smooth GPR cor-
responding to small γr underperforms w.r.t. other models
over the entire input range. In this case, the multivalue train-
ing data compounds with the slow varying, inelastic prior,
to create the effect of model fitting against a large set of
outliers. Other GPR models, corresponding to different γr

values suffer from boundary effects, with otherwise sensi-
ble prediction degrading rapidly on the boundary between
univalued and multivalued regions. TGP and ITGP give rea-
sonable predictions, with consistently lower mean absolute
error. Both TGP and ITGP prediction directly optimizes
the output under training set constraints, hence prediction
is not necessary a continuous function of input. This pro-
vides a mechanism for learning multivalued relations. Fur-
thermore, as seen in Fig. 2, by selecting a suitable γx , TGP
and ITGP can make predictions based on data that lives
in dominant, high density regions centered at the input,
hence it can ignore the impact of far away or low-density
data.

Figure 3 shows how the cost functions of TGP and ITGP
vary with output. In the univalued region (corresponding to
r = 0.1, see the top two rows in Fig. 3), TGP’s basin of at-
traction in the neighborhood of the desired solution is large,
in fact significantly more so than the one of ITGP. (Certainly
more local optima exist in high dimensions, but even there
the methods work well, see our Sect. 4.) In the multival-
ued region corresponding to, say, r = 0.5 (see also the bot-
tom two rows in Fig. 3), TGP has only one local optimum
whereas ITGP has three. These correctly reflect the possi-
ble hypotheses, although for inputs in the middle range, al-
though if we had to favor one solution, we should rather
choose the middle branch, corresponding to a substructure

Int J Comput Vis (2010) 87: 28–52 35

Fig. 2 Prediction of KNN, Gaussian Process Regression (GPR) and
Twin Gaussian Processes (TGP, ITPG) on the test set of the toy ex-
ample described in Fig. 1. Err is mean absolute error. Top shows the
prediction given by KNN for different number of neighbors, 1, 10 and
20. Second row shows predictions of GPR with different kernel pa-
rameters γr = 1, 5 and 10. Third row shows predictions of TGP with

different output kernel width parameters γx = 10, 15 and 20. Forth row
shows prediction given by ITGP with different kernel widths γx = 10,
15 and 20 (width parameter γr is fixed at 0.2, cross-validated, for both
TGP and ITGP). The minima of ITGP tend to remain unchanged on the
boundary between univalued and multivalued regions, hence prediction
is flat there

36 Int J Comput Vis (2010) 87: 28–52

Fig. 3 Costs of TGP and ITGP (14 and 19) as function of output x,
for λr , λx = 10−4 and γr = 0.2. In the two top rows, input r is 0.1, for
the bottom two, r is 0.5. From left to right, γx is 10, 15, 20. The local
optima of TGP correspond to correct outputs for the different inputs

given (to check, use Fig. 1 to raise a vertical line at the query r and
read the corresponding x values where this intercepts the S shape; see
the match with the minima of TGP/ITGP

with most nearby data support. This partly explains why
TGP is empirically found to be more reliable than ITGP for
human pose reconstruction, although both work well in the
toy case.

2.3 Dynamic Twin Gaussian Processes (DTGP)

In sequence modeling or time series problems like track-
ing, the state vectors link temporally, so the current state

Int J Comput Vis (2010) 87: 28–52 37

not only correlates with the current image (observation),
but often bears strong relation with previous states, in par-
ticular the most recent. For non-linear dynamical systems,
e.g. generative time-series models solved with Kalman fil-
tering or particle filtering, the dependencies appear explic-
itly in distributions p(xt |rt) or p(xt |xt−1) (Bar-Shalom and
Fortman 1988; Isard and Blake 1998). For conditional time
series models, the relations surface up as tertiary cliques,
and recursive density propagation updates use local distrib-
utions p(xt |xt−1, rt) that bind together the reactive effect
of measurements and correlations with the previous state
(Sminchisescu et al. 2007). Here we take a cost break-
down inspired by generative sequence models (but notice
that our search-based structured predictor integrates prior
knowledge and search in a way that is very different from
generative models), and optimize the current state based not
only on TGP that correlate states and observations at the
same timestep, but also states at successive timesteps. Anal-
ogous to how the dependencies are modeled in autoregres-
sion (Bar-Shalom and Fortman 1988; Blake et al. 1999),
we consider an auto-TGP. Without loss of generality, we
work with a first-order auto-TGP, where the current state
is independent of all but the most recent one. Extensions
to multiple state dependencies are straightforward, although
they imply a more expensive optimization over state subse-
quences larger than two timesteps, and are more sensitive to
phase alignment of training and testing sequences.

Let Xt = (x2,x3, . . . ,xt) be the joint set of states, includ-
ing the current timestep t , where Xt stores the pose vec-
tors columnwise. For notational compactness, we assume
the training set is temporally ordered. (For cases where the
training set includes several sequences, the initial state X0 of
each can be adjusted using an observation-sensitive TGP).
Given Xt−1 and Xt as training inputs and outputs, the idea
in auto-TGP is to predict the current state given the last state
using TGP (the observation in the original TGP becomes
the state at the previous timestep in the supplementary auto-
TGP term).

As for the TGP in the previous section, we specify a joint
Gaussian distribution over the training inputs and the test
input xt−1:

[
(Xd

t−1)
�

xd
t−1

]
∼ NXt−1

(

0,

[
KXt−1 Kxt−1

Xt−1

(Kxt−1
Xt−1

)� KXt−1(xt−1,xt−1)

])

(20)

Using the kernel function defined on outputs, we estimate
the covariance matrix

KXt

⋃
xt

=
[

KXt Kxt

Xt

(Kxt

Xt
)� KXt (xt ,xt)

]
(21)

Again, we match the estimated covariance matrix of outputs
to the one of inputs using Kullback-Leibler divergence. In-
voking matrix identities and dropping constants, we mini-
mize (22) with input xt−1 and output xt , as follows:

A(xt ,xt−1)

= KXt (xt ,xt) − 2(Kxt

Xt
)�K−1

Xt−1
Kxt−1

Xt−1

+ (Kxt−1
Xt−1

)�K−1
Xt−1

KXt K
−1
Xt−1

Kxt−1
Xt−1

−
[
KXt−1(xt−1,xt−1) − (Kxt−1

Xt−1
)�K−1

Xt−1
Kxt−1

Xt−1

]

× log
[
KXt (xt ,xt) − (Kxt

Xt
)�K−1

Xt
Kxt

Xt

]

+
[
KXt−1(xt−1,xt−1) − (Kxt−1

Xt−1
)�K−1

Xt−1
Kxt−1

Xt−1

]

× log
[
KXt−1(xt−1,xt−1) − (Kxt−1

Xt−1
)�K−1

Xt−1
Kxt−1

Xt−1

]

(22)

Combining observation and dynamic components, we cre-
ate a dynamic TGP (DTGP), which minimize the tradeoff
between an observation-sensitive TGP and an auto-TGP:

D(x1,x2, . . . ,xT) =
T∑

t=1

L(xt) + λ

T∑

t=1

A(xt ,xt−1) (23)

where λ ≥ 0 is a tradeoff parameter.
One option is to optimize the cost sequentially, in a sweep

similar to filtering in non-linear, generative time-series mod-
els (the cheapest option, computationally): at t = 1, only es-
timate the state based on the observation sensitive TGP term
of the cost (22). In subsequent steps fix xt−1 to the previ-
ously estimated value and optimize the observation sensitive
and dynamic components of the cost w.r.t. xt . Other opti-
mizations we have tried include the smoothed version where
xt at all timesteps are estimated jointly, based on an entire
observation sequence, or a middle ground, where shorter
state subsequences are smoothed (we tested sequences of
size 2, 5, 10, 15, 20, 30, 40 frames). All these more ex-
pensive strategies improve the estimates to some degree, al-
though in our experiments we found performance to saturate
beyond 20 timesteps.

Training. We need to compute matrices K−1
R , K−1

Xt−1
, K−1

Xt

and K−1
Xt−1

KXt K
−1
Xt−1

, none depending either on the test input
or the test output. These account for temporal information in
the training set (damping factors λr , λxt−1 and λxt are used,
in order to improve the stability of inversion).

Prediction. Like TGP, prediction of DTGP requires non-
linear optimization over the desired number of timesteps.
We work with the full DTGP (no KNN optimization, see
next section Sect. 2.4) and make predictions, once again, by

38 Int J Comput Vis (2010) 87: 28–52

optimizing with a BFGS quasi-Newton method, with cubic
polynomial line search, and caching of output-independent
matrix blocks. DTGP-KNN is potentially more complex to
implement as nearest-neighbors of states being optimized,
that forms the input to the pair-wise state auto-TGPs, change
in a potentially non-smooth manner during optimization
(we have obtained stable results using subgradient meth-
ods). Initializing the state sequence using TGP (no dynamic
constraints, independent observation-based models at each
time-step) often improves the speed of convergence and
the accuracy of prediction significantly compared to other
strategies.

2.4 Twin Gaussian Process with K Nearest Neighbors

TGP requires N ×N matrix inversions with O(N3) training
cost and O(N2) memory storage, which is impractical for
problems with more than 10,000 examples. Sparse approxi-
mations can be used to reduce the training and storage cost
of TGP (Smola and Schölkopf 2000; Vincent and Bengio
2002). The methods select a representative subset of regres-
sors, dropping training complexity to O(Np2), where p is
the size of the subset. Since p�N in most cases, sparse ap-
proximations achieve substantial speedups. They remain ap-
plicable here, although a potential limitation is the indepen-
dence of the representative subset from the run-time query.
Another aspect is scaling to very large datasets where to
achieve sufficiently accurate approximations even the sparse
subset can be too large.

Here, we adopt a conceptually simpler method: find the
K nearest neighbors of a test input and estimate TGP on the
reduced set (TGPKNN). A similar approach is widely used
in local regression (Schaal et al. 1997). The differences from
sparse approximations are worth noticing. Sparse methods
find a reduced set globally, and this remains unchanged dur-
ing testing. Instead, the working set of TGPKNN depends
on the current test input. This allows us to work with a sig-
nificantly smaller set that is potentially more relevant locally
and likely to generalize better. The trade-off is, as expected,
in training vs. testing speed.

The naive version of KNN is easy to implement (com-
pute distances between a test and all training inputs), but
computationally intensive for large datasets. Many sophis-
ticated NN search algorithms have been proposed, gen-
erally seeking to reduce the number of distance evalua-
tions performed. Recent work (Krauthgamer and Lee 2004;
Cortes et al. 2005) shows that the cost of K nearest neigh-
bor queries can be driven down to O(log(N)) if cover tree
data structures are used. We follow this to drop the compu-
tational cost of TGPKNN to O(log(N))+ O(K3), where K

is constant (in our experiments, K = 1000 worked just fine).
Hence, TGPKNN has potential for large training sets in the
order of 108 examples.

3 Kernel Target Alignment and Hilbert-Schmidt
Independence Criterion

An alternative interpretation is to view the Kullback-Leibler
divergence as one possible kernel dependency measure that
gives the goodness of alignment between two kernels. This
raises the question whether other kernel dependency mea-
sures can work better than KL for prediction. Kernel Tar-
get Alignment (KTA) (Cristianini et al. 2001a, 2001b) is a
widely used measure that has been applied to kernel para-
meter optimization, feature selection, clustering, etc. KTA
writes as follows:

KTA = Tr(KRX�X)
√

Tr(KRKR)Tr(X�XX�X)
(24)

where KR is the kernel matrix defined over inputs and X is
the output. Although the original KTA does not use a non-
linear kernel on outputs, one can, in principle replace X�X
by KX:

KTA = Tr(KRKX)√
Tr(KRKR)Tr(KXKX)

(25)

Like in the previous section, consider the two kernel ma-
trices defined over an augmented set consisting of a train-

ing set, a test input and its target output:
[KR Kr

R

(Kr
R)� KR(r,r)

]
and

[KX Kx
X

(Kx
X)� KX(x,x)

]
. Substituting into (25), we obtain

KTA = Tr(KRKX) + 2(Kr
R)�Kx

X + KR(r, r)KX(x,x)
√

Tr(KXKX) + 2(Kx
X)�Kx

X + KX(x,x)KX(x,x)

(26)

where we dropped the constant term:

√
Tr(KRKR) + 2(Kr

R)�Kr
R + KR(r, r)KR(r, r) (27)

Prediction is made by maximizing (26) with respect to x.
Another potentially relevant alignment method is the

Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et
al. 2005a, 2005b). This has the form:

HISC = (N − 1)2Tr(KXHNKRHN) (28)

where HN = IN − 1N

N
, IN is an N × N identity matrix and

1N is an N × N matrix of all 1s. We consider an augmented
set (training set, test input and target output):

HSIC = N2
[
Tr(KRKX) + 2(K

r

R)�Kx
X

+ KR(r, r)KX(x,x)
]

(29)

Int J Comput Vis (2010) 87: 28–52 39

Fig. 4 Prediction of kernel target alignment and Hilbert-Schmidt inde-
pendent criterion on the test set of the toy problem described in Fig. 1.
Err is the mean absolute error. Top row shows the prediction given by

KTA with width parameters γx = 30, 40, 50. Bottom row gives HSIC
predictions for widths γx = 10, 15, 20. The parameter γr is cross-
validated to 5 and 0.2 for KTA and HSIC, respectively

where

[
KR K

r

R

(K
r

R)� KR(r, r)

]

= HN+1

[
KR Kr

R

(Kr
R)� KR(r, r)

]
HN+1

(30)

Figure 4 shows predictive results of KTA and HSIC on
the toy problem described in Fig. 1. Like TGP, KTA and
HSIC can deal with discontinued, multivalued regimes (the
prediction can change abruptly on the boundary between
univalued and multivalued regions) although KTA and HSIC
appear to be less accurate than TGP. Our experiments for
human motion reconstruction in Sect. 4 suggest that TGP
is significantly more accurate than KTA and HSIC. TGP is
closely related to Gaussian processes which are successful
predictors for standard cases, whereas algorithms like KTA
or HSIC were primarily designed for parameter selection or
independence testing, not for prediction. For instance, the
cost function of HSIC is not necessarily maximized when
the two kernel matrices are identical, which makes predic-
tion by HSIC somewhat inaccurate even in regions where
there are consistently single solutions.

4 Experiments

We evaluate the performance of TGP and its variants on the
HumanEva-I dataset (Sigal and Black 2006), which consists
of 4 subjects doing 6 predefined actions: Walking, Jogging,
Throw-catch, Gestures, Boxing and Combo (walking fol-
lowed by jogging and then balancing on each one of the
two feet). Video data and ground truth motion of the body
are captured using a marker-based motion capture system
and synchronized in software. Combo motions of all sub-
jects and all motions of one subject are withheld. Table 1
summarizes the structure of the training set (frames with in-
valid MoCap were removed). For details on HumanEva, see
the report by the authors (Sigal and Black 2006). For some
of the experiments we use image features extracted from
the first camera, together with additional training samples
obtained from the second and the third camera, using vir-
tual rotations of their pose sets into one common monocular
frame (Poppe 2007). In this way we triple the ‘monocular’
training set (rather than triple the descriptor size). Models
obtained in this way are referred in our tables as ‘C1Add’.
We also run (truly) monocular experiments where only data
from one camera is used, e.g. ‘C1’. In other experiments,
image features extracted of images from 3 cameras are com-
bined in a (longer 3×) descriptor, ‘C1+C2+C3’.

40 Int J Comput Vis (2010) 87: 28–52

Fig. 5 Affinity matrices for
different motions executed by
Subject 2 in HumanEva. These
correspond to features extracted
from images of the first camera,
on temporally ordered test
sequences, and are computed
based on the Euclidean distance
between image features (darker
means more similar). The first
and third columns show
affinities for HMAX, the second
and fourth for HoG. From top to
bottom: Walking, Jogging and
Gesture sequences

Table 1 Size of training set for HMAX and HoG features on
HumanEva-1. HMAX features are computed as in Kanaujia et al.
(2006) and we use the HoG set of Poppe (2007) for comparisons. There
are small variances in the number of training samples for HMAX and
HoG, caused by different frames of invalid Mocap removed by Poppe
(2007), Kanaujia et al. (2006)

Features Action Subject 1 Subject 2 Subject 3 Total

HMAX Walking 1197 870 931 2998

Jogging 597 789 834 2220

Throw/Catch 217 1011 0 1228

Gestures 795 893 1096 2784

Box 783 652 1015 2450

Total 3589 4215 3876 11680

HoG Walking 1176 876 895 2947

Jogging 439 795 831 2065

Throw/Catch 217 806 0 1023

Gestures 801 681 214 1696

Box 502 464 933 1889

Total 3135 3622 2873 9630

Image Features. The backgrounds are known and fairly
uniform, hence silhouettes can be computed. We use non-
parametric background models and adaptive thresholding
procedures for better accuracy (Elgammal and Lee 2004).
We consider two types of state-of-the art image features:
HMAX and histogram of oriented gradients (HoG). HoG
(Lowe 2004; Dalal and Triggs 2005) is a block representa-
tion that concatenates SIFT descriptors (histograms of gra-

dient orientation) extracted on a regular grid placed in a pu-
tative detection window, in our case, the bounding box of a
silhouette. HMAX (Deutscher et al. 2000) is a hierarchical,
multilayer model inspired by the feedforward processing
pipeline of the visual cortex. It alternates layers of template
matching (simple cell) and max pooling (complex cell) oper-
ations in order to build representations that are increasingly
invariant to scale and translation. Simple layers use convolu-
tion with local filters (template matching against a set of pro-
totypes), in order to compute higher order (hyper)features,
whereas complex layers pool their afferent units over limited
ranges, using a MAX operation, in order to increase invari-
ance. Rather than learning the bottom layer, the model uses
a bank of Gabor filter simple cells, computed at multiple
positions, orientations and scales. Higher layers use simple
cell prototypes, obtained by randomly sampling descriptors
in the equivalent layer of a training set (k-means clustering
can also be used), hence the construction of the hierarchi-
cal model has to be done stage-wise, bottom-up, as layers
become available.

Affinity matrices for HMAX (Serre et al. 2007) and HoG
(Lowe 2004; Dalal and Triggs 2005; Sminchisescu et al.
2006) are shown in Fig. 5. The strongly similar subdiagonal
bands confirm some of the ambiguities associated to the se-
lected image features, e.g. at half-cycles for walking parallel
to the image plane. For an alternative view see also Fig. 6.

Pose Representation. Human pose (x) is represented as
60d vectors of three-dimensional body joint positions (20
joints or markers each having X, Y and Z co-ordinates) us-
ing ‘torsoDistal’ as root joint. All poses are preprocessed

Int J Comput Vis (2010) 87: 28–52 41

Fig. 6 Ambiguities in HumaEva-I. We select a test image according to the motion shown in the title and find its 50 nearest neighbors based on
HoG. We record 3d poses associated with the 50 images and plot the Euclidean distance between the pose of the nearest image and the other 49
poses (notice that no ground truth is used, as we don’t have it). Notice that poses cluster at multiple well separated levels

by subtracting the root joint location from all the other joint
positions in every frame. This representation is not partic-
ularly good for learning, as perceptually identical poses of
people with different body proportions tend to be encoded
somewhat differently (joint angles and skeletons could have
been more appropriate, but they are not currently available
for HumanEva), but our normalization by root subtraction
appears to largely palliate this. In fact, it turns out that TGP
is not sensitive to different body proportions or the existence
of accurate kinematic or volumetric human body models:
methods trained on samples captured from all subjects do
not perform significantly worse than those trained on indi-
vidual subjects (see our Tables 4 and 5). This degree of ro-
bustness is harder to achieve with a generative model where
alignment (observation modeling) constraints pay an impor-
tant role, and reliable inference is often contingent both on
a 3d human model well adapted to the body proportions
of each human subject and on good camera calibration, set
aside model initialization. These stringent requirements are
no longer required for TGP.

Error Metric. We report the error between the estimated x
and the ground truth pose x according to the measure sug-
gested by Sigal and Black (Sigal and Black 2006), and used
by the online evaluation system:

D(x,x) = 1

M

M∑

i=1

‖mi(x) − mi(x)‖ (31)

where mi(x) ∈ R
3 is a function that extracts the three dimen-

sional coordinates of the ith joint position, M is the number
of the joint positions for each pose and ‖ · ‖ is the Euclidean
distance. For a motion sequence of T frames, we report the
average joint position error as:

Errseq = 1

T

T∑

i=1

D(xi ,xi) (32)

4.1 Initialization of TGP

For pose estimation, TGP optimizes a non-convex cost func-
tion (14), and a suitable initialization is desirable in order to
avoid shallow local optima. We study the impact of three dif-
ferent initialization methods: K nearest neighbors (KNN),
ridge regression (RR) with models trained for each output
dimension independently and ground truth (GrTruth), which
we don’t have in general, but represents a gold standard to
check against model bias. In this experiment we use the val-
idation set as test set, but for methodological consistency we
divide each train and validation sequence into approximately
equal chunks. The new ‘training and validation set’ consists
of the second half of all motions sequences from all subjects
and the new ‘test set’ consists of their first half.

We set λr = λx = 10−4 (inversion of kernel matrices is
involved in TGP and mild damping with a multiplicative
factor of a diagonal matrix improves stability), and to cross-
validate we grid search for γr and γx over suitable ranges.
The results are shown in Table 2. As expected, ground truth
initialization works best among all three methods. RR out-
performs KNN in most cases with estimates based on RR
close to the ones obtained from ground truth. For example,
for HoG (C1+C2+C3), RR initialization gives the same av-
erage error as the ground truth for Subjects 2 and 3, and only
0.4 mm higher average error for Subject 1.

4.2 Evaluation of Dynamic TGP

This section compares the static and dynamic versions of
TGP. We initialize TGP using independent output RR and
optimize the kernel parameters γr and γx using cross vali-
dation. We initialize DTGP with the estimated pose of the
observation-sensitive TGP, obtained independently, at each
timestep—this usually gives good starting points and accel-
erates convergence. The observation-dependent component
of DTGP is set as in the static model (TGP) and the ker-
nel parameter of the dynamic, auto-TGP, γA is set to γx . We

42 Int J Comput Vis (2010) 87: 28–52

Table 2 Evaluation of different initializations using HMAX and HoG
on HumanEva-I. Models are trained on data from all subjects. The low-
est error is shown in bold. In the table, ‘/’ show that the values are not
available (no training samples); ‘Average’ gives the averaged error for
the different motions of the same subject; ‘C1’ means image feature are
computed only from the first camera; ‘C1+C2+C3’ means image fea-
tures from three cameras are combined in a single descriptor; ‘C1Add’

means that image features from all three cameras are used as if they
were captured by a single camera by transforming the 3d coordinates
of poses in those cameras using their displacements relative to the first
camera, thus tripling the standard monocular training set size (Poppe
2007). KNN, RR and GrTruth indicate that TGPKNN is initialized with
K nearest neighbors, ridge regression and ground truth, respectively

Features Motions Subject 1 Subject 2 Subject 3

KNN RR GrTruth KNN RR GrTruth KNN RR GrTruth

HMAX Walking 43.9 43.7 41.8 25.4 25.4 25.4 70.9 68.9 64.5

(C1) Jogging 60.2 57.6 54.7 53.7 53.2 52.7 37.5 37.4 36.4

Gestures 11.9 11.9 11.9 100.8 102.1 87.3 27.7 27.7 27.8

Box 52.9 52.9 52.7 104.5 82.5 78.6 65.2 68.9 61.4

ThrowCatch 136.8 137.8 129.5 89.9 83.9 78.7 / / /

Average 61.1 60.9 58.1 74.9 69.4 64.5 50.3 50.7 47.5

HMAX Walking 33.2 33.2 33.2 22.6 22.6 22.6 67.4 61.1 57.5

(C1+C2+C3) Jogging 47.1 47.1 47.1 47.1 46.9 46.7 32.7 31.9 31.8

Gestures 10.0 10.0 10.0 96.5 86.4 82.2 25.9 25.7 24.1

Box 49.6 49.8 46.8 63.2 57.8 57.5 53.5 56.8 52.7

ThrowCatch 127.3 126.0 117.9 71.9 71.3 69.9 / / /

Average 53.4 53.2 51.0 60.3 57.0 55.8 44.9 43.9 41.5

HoG Walking 45.4 43.4 42.9 28.3 28.3 28.3 62.3 62.5 62.3

(C1) Jogging 55.1 55.1 55.1 43.2 42.5 42.5 37.4 37.4 37.4

Gestures 11.8 11.8 11.8 68.7 68.3 68.3 74.6 74.5 74.5

Box 42.5 42.5 42.5 64.0 64.0 62.8 69.3 70.4 67.4

ThrowCatch 137.8 137.8 136.9 81.5 78.7 70.6 / / /

Average 58.5 58.1 57.8 57.1 56.4 54.5 60.9 61.2 60.4

HoG Walking 29.1 29.1 29.1 19.2 19.2 19.2 46.8 47.0 46.8

(C1+C2+C3) Jogging 43.7 43.6 43.7 32.6 32.6 32.6 28.9 28.9 28.9

Gestures 8.9 8.9 8.9 58.2 58.2 58.2 66.9 66.8 66.9

Box 35.6 35.6 35.6 49.9 49.9 49.9 57.9 47.8 47.7

ThrowCatch 145.2 116.7 114.8 60.9 60.9 60.9 / / /

Average 52.5 46.8 46.4 44.2 44.2 44.2 50.1 47.6 47.6

HoG Walking 31.4 30.8 30.6 25.4 25.4 25.4 54.5 51.4 49.9

(C1Add) Jogging 50.2 49.5 45.1 32.3 32.3 32.3 31.6 31.6 31.6

Gestures 11.9 11.9 11.9 75.7 75.8 75.7 119.2 118.2 78.7

Box 44.7 44.7 44.6 64.7 64.3 64.3 72.3 67.6 59.8

ThrowCatch 134.2 137.1 125.9 76.5 72.5 71.0 / / /

Average 54.5 54.8 51.6 54.9 54.0 53.7 69.4 67.2 55.4

choose the remaining two free parameters: step length T and
tradeoff λ using CV (here T = 20).

We show the average joint position error of TGP and
DTGP as function of frame in Fig. 7. In general, DTGP
improves over TGP by 5–20%. The error of DTGP for the
Jogging motion of Subject 1 (top), Walking motion of Sub-
ject 2 (middle) and Box motion of Subject 3 (bottom) are
77.4 mm, 22.6 mm and 60.5 mm, respectively whereas those
of TGP are 81.3 mm, 27.9 mm and 65.8 mm. The use of

temporal constraints makes DTGP more robust to outliers
or poorly segmented silhouettes compared to TGP. E.g., the
standard deviation of DTGP for the Box motion of Subject
3 is 26.4 mm whereas the one of TGP is 52.5 mm. In prac-
tice, the superior performance over TGP does not maintain
its margin for models trained with data from multiple sub-
jects on the same motion, or for even more complex mod-
els where different motions from multiple subjects are com-
bined. In such cases, we notice an attenuation in the dynamic

Int J Comput Vis (2010) 87: 28–52 43

Fig. 7 TGP with and without
dynamics. HMAX features
extracted on images from the
first camera are used for
evaluation. Models are trained
on a single motion of a single
subject and tested on the same
motion. Since the size of
training set is relatively small,
we run full TGP and DTGP
models without KNN
preprocessing. Top: Jogging
motion of Subject 1. Middle:
Walking motion of subject 2.
Bottom: Box motion of Subject
3. DTGP not only gives lower
average error, but also
significantly lower maximum
error

Fig. 8 TGP and DTGP (no
KNN optimization) with and
without dynamics, for complex
training scenarios (both use
HMAX). Top show results for
models trained on the same
motion type with data from
multiple subjects. Bottom show
models trained jointly using all
motions from all subjects.
DTGP are still marginally better
and many outlier predictions
appear to be smoothed out, but
the dynamic boost is no longer
as significant as for the subject
specific models illustrated in
Fig. 7, which is what we usually
fear of most motion models.
This likely happens because
different subjects execute
activities at different speeds and
with different styles, and
combining multiple motions
further increases the chance to
‘pick the wrong branch’ in the
dynamic model

boost offered by DTGP (Fig. 8), which is what we fear in

the first place of most dynamical models. This likely hap-

pens because different subjects execute activities at differ-

ent speeds and with different styles, and combining multiple

motions puts additional pressure on the fixed trade-off pa-

rameter that weights the observation and dynamic-sensitive

terms in DTGP (extensions to more complex non-constant

trade-offs are currently studied).

44 Int J Comput Vis (2010) 87: 28–52

Table 3 Average errors for ITGPKNN, HSICKNN and KTAKNN on
the validation set of HumanEva-I, with lowest error in bold. In the
table, ‘/’ marks values that are not available (no training samples);
‘Average’ gives average error for different motions of the same subject;
‘C1’ indicates that models are trained only with HoG features extracted

form only the first camera. ITGPKNN, HSICKNN and KTAKNN use
800 nearest neighbors, and are initialized using the output of ridge
regression (RR) with univariate predictors trained independently for
each dimension

Features Motions Subject 1 Subject 2 Subject 3

ITGPKNN KTAKNN HSICKNN ITGPKNN KTAKNN HSICKNN ITGPKNN KTAKNN HSICKNN

HMAX Walking 67.6 89.5 90.7 47.7 71.8 82.0 85.7 102.1 124.2

(C1) Jogging 84.4 95.0 101.0 83.3 95.7 94.2 71.4 84.9 134.6

Gestures 13.0 24.4 26.7 117.9 118.9 136.4 30.3 43.8 39.2

Box 64.6 79.1 132.1 99.3 106.1 153.5 85.5 101.7 112.0

ThrowCatch 143.6 152.6 156.8 95.4 102.1 93.6 / / /

Average 74.6 88.1 101.5 88.7 98.9 111.9 68.2 83.1 102.5

HoG Walking 71.7 92.0 95.1 46.5 76.8 85.5 80.2 95.9 116.7

(C1) Jogging 72.6 82.7 97.5 72.4 89.3 93.2 73.2 86.4 123.4

Gestures 12.3 23.7 25.8 95.2 95.0 126.9 36.2 45.5 39.3

Box 55.8 75.9 121.1 96.8 108.7 121.7 81.8 102.2 109.3

ThrowCatch 149.7 163.8 166.4 91.8 98.8 92.6 / / /

Average 72.4 87.6 101.2 80.5 93.7 104.0 67.9 82.5 97.2

4.3 ITGP, KTA and HSIC

This section studies the performance of ITGP, KTA and
HSIC, described in Sect. 3. These work similarly with TGP
(the output is non-linearly optimized for prediction, initial-
ized using RR, etc.), except that different cost functions
used. The regularizers λr = λx = 10−4 and kernel parame-
ters γr and γx are optimized using cross validation. The av-
erage error for ITGP, KTA and HSIC is given in Table 3.
In general, ITGP is superior to KTA and HSIC. Compared
with Table 2, TGP significantly outperforms ITGP, KTA and
HSIC, a finding consistent with our earlier analysis. Notice
that it is computational feasible to run KTA and HSIC with-
out KNN, but our experience suggests that combining KTA
and HSIC with KNN gives lower errors compared to models
trained on the full dataset.

4.4 Evaluation of TGP

We compare TGP with weighted K nearest neighbor
(WKNN) and Gaussian Process Regression (GPR), using
HumanEva’s online evaluation system on the test set (the
ground truth poses of test videos are withheld by the data-
base creators). WKNN locates the K closest training sam-
ples between a test input and all training inputs and predicts
as the weighted sum of their corresponding outputs:

x∗ =
∑

j∈Nk(r) W(r, rj)xj
∑

j∈Nk(r) W(r, rj)
(33)

where Nk(r) is the index set of the K nearest neighbors for
the test input r and W(r, rj) is the similarity measure (here

Euclidean distance) between r and rj . A different, yet re-
lated approach for estimation is locally weighted regression
(LWR). LWR is an extension of K nearest neighbors where
the target is approximated locally by a particular function
class f (r;β). The parameters β are learned by minimizing
a weighted cost function defined over the neighbors of the
test input:

β∗
r = argminβr

∑

j∈Nk(r)

W(r, rj)‖xj − f (rj ;βr)‖2 (34)

A common selection for f (r;β) is a low-order polyno-
mial, constant or linear. When f (r;β) is constant, LWR is
equivalent to weighted KNN. We evaluated LWR with linear
f (r;β) on the validation set and our experimental results in-
dicated this model has similar performance with WKNN (in
our tests, it was actually slightly lower), which is also con-
sistent with the observations of Shakhnarovich et al. (2003).
Therefore in the sequel we show comparisons with the faster
WKNN.

Gaussian Process Regression (GPR), described in
Sect. 2.1 is also tested. We determine optimal hyperpara-
meters γr and λr by maximizing the marginal likelihood,
the standard GPR hyperparameter selection scheme. For the
tripled training set (C1Add), we use Gaussian process re-
gression with K nearest neighbors, which works similarly
with TGPKNN, by locating the K nearest neighbors of a
test input and performing GPR.

Testing times for WKNN, GPR and TGPKNN are given
in Fig. 9, with close timings of WKNN and GPR. This is
not surprising because similarly to WKNN, the most time-
consuming operation in GPR is the evaluation of the dis-

Int J Comput Vis (2010) 87: 28–52 45

Fig. 9 Comparison of test time (in seconds) for WKNN, GPR, GP-
KNN and TGPKNN. All models are trained on the full dataset. The up-
per plot shows results on HoG, tripled for camera 1 (C1Add), whereas
the bottom plot shows results for a model that used HMAX, trained
on features from all cameras, concatenated in a single input descrip-
tor. Algorithms are implemented in Matlab 7.1 and run on a PC with a
3.6 GHz P4 processor and 8 Gb of RAM. WKNN, GPKNN and TGP-
KNN use 25, 800 and 800 nearest neighbors, respectively, obtained by
cross-validation. For GPR, training time is about 400 seconds, whereas
no training is needed for WKNN, GPRKNN and TGPKNN. Testing
time of TGPKNN is slightly higher than WKNN, GPR and GPRKNN
(as expected), but not significantly and scales favorably with the size of
the dataset. As the dataset grows, KNN calculations dominate the cost
of local optimization required for structured prediction

tance between the test input and all the ones in the training
set (or those selected by KNN). TGPKNN is more time-
consuming than both WKNN and GPR as besides finding
the K nearest neighbors of the test input, it also needs to
optimize the cost (14). For the current dataset, the testing
time of TGPKNN remains similar to competitors even if the
training set is increased, which indicates that optimizing the
cost function does not dominate the computational cost of
TGPKNN (the optimization problem in TGPKNN does not
depend on the size of the full training set, only on the di-
mensionality of the output). Hence, if the number of nearest
neighbors is fixed, the test time of TGPKNN will eventually
approach WKNN, since KNN calculations dominated as the
number of training samples increases.

We report average joint position errors for WKNN, GPR,
GPRKNN and TGPKNN in Tables 4 and 5. We run two sets
of comparisons: one uses models trained on the full dataset
and tested on all the motions of all the subjects (Table 4).
For the other tests, we use models trained on all motions of
one subject and tested on all motions of the same subject
(Table 5). It is remarkable that there is no significant differ-
ence between results of models trained on the full dataset
and ones trained per subject. In practice, this is an essential
feature of a robust system as building an accurate model for
each new subject by hand is infeasible and obtaining it au-
tomatically is at the moment questionable with any of the
existing methods, particularly given the variety of clothing
and human body proportions in real scenes.

As expected, models that combine features from multiple
views work better than those that use only information from
single views. In general, all models work slightly better for
HoG than HMAX in this dataset, especially for Subjects 2
and 3, where about 10 mm lower average error is obtained
using HoG. TGPKNN outperforms other methods we tested
and gives lower average errors. For the average joint po-
sition error over each subject (corresponding to ‘Average’
line in Tables 4 and 5), TGPKNN consistently gives 10–
15 mm improvement relative to WKNN, GPR (GPRKNN).
TGPKNN works best on multiple views with HoG features,
HoG (C1+C2+C3), where it obtains 44.4 mm and 46.3 mm
errors for the models trained on the full dataset and one
subject, respectively. GPR and WKNN give similar perfor-
mance in most cases. An exception is multiview-HoG where
GPR is slightly better than WKNN.

Taking a closer look at each activity, we observe that
there is quite a bit of a difference in the errors among differ-
ent motions and cameras. In general, Walking and Jogging
motions are reconstructed with low relative error. Analysis
of the video data and viewpoints shows that these two mo-
tions are executed at lower speed than other motions. For
Gestures, the error of Subject 1 and Subject 3 is much lower
than for Subject 2. The video data shows that the body and
the two legs of Subject 2 move a lot. Subject 3 is facing
the first camera, and it appears more difficult to estimate the
depth of the arms. This explains why errors in the 2nd and
3rd cameras tend to be lower than that of the 1st camera (the
former two are in flank of Subject 3). Box and ThrowCatch
(Subject 3) motions are recovered with relatively large er-
ror. The video data shows that these motions are faster than
others and all the parts of the body are moving. Being more
complex, it is also quite likely that the three human subjects
perform the motions very differently. In Combo sets made
of walking, jog and jumping, the reconstruction of walking
and jogging is accurate whereas jumps give larger error, as
they do not appear in the training set and tend to vary signif-
icantly among subjects.

Insight on how errors evolve, function of time, for dif-
ferent models WKNN, GPR and TGPKNN is given in

46 Int J Comput Vis (2010) 87: 28–52

Table 4 Evaluation of average joint position error (and variance) of
different models that use input descriptors based on HMAX and HoG
on the test set of HumanEva-I (error reported in mm). All models are
trained jointly on data from the three human subjects. Average joint
position error is computed by Humaneva’s online evaluation system,
and we discard frames with invalid mocap case when the evaluation
system returns −1 (note that averages become lower if values for in-
valid frames are taken to be 0). The lowest error is given in bold. In
the table, ‘/’ indicates that the values are not available (for whatever
reason no test results are returned); ‘Average’ gives the average er-

ror for the different motions of the same subject; ‘C1’ indicates that
image features are computed only using data from the first camera;
‘C1+C2+C3’ means that image features from three cameras are com-
bined in a single descriptor; ‘C1Add’ means that data from the first
camera is augmented with data from the second and third by trans-
forming to the coordinate system of the first. We used GPR with KNN
for the tripled training samples (standard GPR wouldn’t work because
there are too many training samples). WKNN, GPRKNN and TGP-
KNN use 25, 800 and 800 neighbors, respectively, all cross-validated

Features Motions Subject 1 Subject 2 Subject 3

WKNN GPR TGPKNN WKNN GPR TGPKNN WKNN GPR TGPKNN

HMAX Walking 45.9(22.6) 65.3(22.3) 37.5(17.0) 48.2(25.5) 60.2(19.2) 40.2(17.8) 63.8(23.6) 74.4(27.9) 51.1(27.1)

(C1) Jogging 55.9(21.0) 69.6(19.8) 48.7(17.7) 56.4(22.6) 66.6(19.0) 46.5(15.3) 68.3(27.2) 82.2(22.0) 58.9(21.1)

Gestures 25.7(5.7) 30.8(6.7) 22.3(4.1) 93.3(30.9) 103.9(20.5) 84.5(16.1) 75.9(26.7) 68.5(9.9) 54.3(11.2)

Box 73.6(14.3) 90.8(15.6) 79.6(23.4) 130.7(60.6) 133.4(54.6) 122.6(59.5) 112.1(48.1) 135.7(46.0) 116.9(64.9)

ThrowCatch / / / 74.5(35.3) 70.4(26.9) 67.5(32.1) 124.5(36.9) 78.3(21.7) 112.7(34.6)

Combo / / / 87.6(61.6) 90.1(45.6) 74.1(53.3) 131.7(88.9) 125.2(63.3) 116.1(77.4)

Average 50.3 64.1 47.0 81.7 87.4 72.6 96.0 94.1 85.0

HMAX Walking 41.5(15.5) 53.0(17.0) 31.3(7.2) 47.2(30.4) 44.8(15.5) 32.2(15.3) 46.2(21.7) 56.1(19.5) 35.3(16.3)

(C1+C2+C3) Jogging 52.1(18.7) 49.8(12.2) 37.1(9.1) 44.3(15.2) 47.8(12.5) 34.6(7.4) 52.3(22.3) 60.6(18.6) 42.7(15.7)

Gestures 24.3(7.4) 28.0(5.8) 21.6(5.2) 84.0(22.3) 86.1(17.0) 68.7(15.7) 49.6(6.1) 55.3(6.9) 46.5(4.7)

Box 86.8(46.3) 74.2(22.6) 81.7(36.3) 112.1(56.6) 108.5(53.0) 89.7(42.9) 93.4(37.4) 131.6(44.1) 92.8(51.6)

ThrowCatch / / / 69.2(33.5) 70.4(26.9) 53.2(22.9) 114.1(35.9) 66.4(24.9) 90.2(33.6)

Combo / / / 82.3(53.4) 73.5(44.8) 62.3(50.0) 91.9(49.3) 110.7(53.3) 81.4(49.1)

Average 51.2 51.3 42.9 73.1 71.9 56.8 74.6 78.5 64.8

HoG Walking 47.5(21.1) 62.1(25.9) 38.2(21.4) 46.7(35.2) 51.1(30.0) 32.8(23.1) 66.7(32.0) 58.2(25.2) 40.2(23.2)

(C1) Jogging 54.5(22.4) 64.4(21.1) 42.0(12.9) 43.3(14.4) 51.9(22.7) 34.7(16.6) 56.1(25.4) 66.6(28.0) 46.4(28.9)

Gestures 23.4(13.5) 26.8(11.2) 20.4(7.6) 75.1(28.1) 85.5(21.8) 71.7(25.7) 75.3(11.1) 75.3(11.5) 72.7(21.2)

Box 79.7(27.7) 78.3(21.7) 63.1(14.2) 105.8(46.9) 100.3(46.2) 98.6(64.1) 100.4(52.3) 117.7(43.7) 106.7(62.6)

ThrowCatch / / / 71.4(34.2) 78.6(22.6) 52.6(25.8) 111.7(32.9) 68.1(21.8) 107.5(38.2)

Combo / / / 78.6(48.6) 83.8(50.5) 66.5(61.2) 114.0(77.3) 122.6(80.2) 95.3(75.6)

Average 51.3 57.9 40.9 70.1 75.2 59.5 87.4 84.8 78.1

HoG Walking 37.5(12.0) 45.1(21.0) 26.6(7.0) 40.1(23.9) 33.5(15.1) 25.2(9.7) 55.3(25.1) 42.3(20.7) 31.0(13.3)

(C1+C2+C3) Jogging 45.2(13.7) 43.1(14.4) 32.2(9.1) 37.7(12.2) 31.4(9.2) 26.9(6.0) 45.4(18.3) 42.6(14.3) 32.4(10.5)

Gestures 23.7(7.2) 27.7(7.4) 19.2(3.5) 72.8(26.3) 67.6(17.8) 50.2(11.2) 56.1(6.4) 48.6(5.2) 50.9(4.6)

Box 88.7(36.2) 66.7(19.1) 57.7(17.3) 91.8(41.2) 81.3(42.9) 72.5(38.0) 92.3(47.9) 90.9(38.1) 75.5(45.1)

ThrowCatch / / / 57.6(23.8) 45.9(20.7) 40.5(16.5) 92.8(31.8) 68.6(23.3) 74.1(31.8)

Combo / / / 71.9(52.2) 58.3(41.8) 51.9(50.3) 83.9(53.0) 76.2(42.8) 64.6(44.3)

Average 48.8 45.7 33.9 62.0 53.0 44.5 71.0 61.5 54.8

HoG Walking 41.2(16.8) 49.6(21.1) 32.0(17.7) 39.6(26.8) 40.7(16.7) 26.9(8.4) 55.3(21.7) 50.9(21.4) 38.4(14.6)

(C1Add) Jogging 46.4(18.6) 52.1(12.6) 36.0(23.4) 38.0(10.0) 43.1(12.8) 31.2(6.8) 47.4(23.5) 50.7(17.7) 35.5(12.2)

Gestures 26.4(13.5) 23.4(10.6) 20.1(7.6) 75.1(28.1) 92.2(24.0) 69.6(23.9) 75.3(11.1) 85.3(12.3) 70.4(26.1)

Box 79.7(27.7) 81.8(24.0) 61.8(12.6) 103.4(45.1) 94.4(37.3) 92.3(51.0) 100.4(52.3) 146.8(54.3) 104.1(61.8)

ThrowCatch / / / 69.5(31.9) 62.9(24.9) 52.2(22.7) 111.7(33.4) 123.0(42.4) 107.6(42.4)

Combo / / / 69.8(49.3) 75.4(54.7) 60.3(63.2) 106.1(79.7) 113.7(87.9) 94.2(91.0)

Average 48.4 51.7 37.5 65.9 68.1 55.4 82.7 95.1 75.0

Int J Comput Vis (2010) 87: 28–52 47

Table 5 Evaluation of the different models using HoG on the test set
of HumanEva-I (error reported in mm). Models for each subject are
trained separately. Average error is computed by Humaneva’s online
evaluation system, with the lowest error in bold. ‘/’ entries mean that
values are not available (no test results returned), ‘Average’ gives av-

erages for different motions of the same subject; ‘C1’ gives results
for image feature extracted from images captured by the first camera;
‘C1+C2+C3’ means that image features from three cameras are com-
bined in a single descriptor. WKNN and TGPKNN use 25 and 800
neighbors, respectively, both cross-validated

Features Motions Subject 1 Subject 2 Subject 3

WKNN GPR TGPKNN WKNN GPR TGPKNN WKNN GPR TGPKNN

HoG Walking 49.2(21.9) 56.5(21.1) 38.1(21.4) 47.4(36.0) 53.4(27.8) 34.4(17.9) 66.8(31.6) 58.1(26.7) 43.0(23.7)

(C1) Jogging 57.8(24.1) 64.9(25.5) 48.1(38.0) 43.6(14.8) 52.4(20.0) 34.9(7.8) 56.2(25.5) 63.4(21.6) 45.0(20.2)

Gestures 26.4(13.5) 28.6(9.6) 20.0(6.6) 74.5(27.4) 85.0(20.7) 71.3(27.0) 75.3(11.1) 73.7(10.8) 64.6(14.3)

Box 85.5(34.7) 75.6(21.0) 62.2(12.4) 105.6(46.7) 94.4(39.5) 92.7(51.7) 100.7(52.3) 118.2(41.0) 101.9(55.6)

ThrowCatch / / / 71.7(34.6) 56.8(24.3) 54.0(26.7) 114.2(35.4) 86.8(25.6) 106.1(34.3)

Combo / / / 79.2(48.9) 85.1(51.1) 68.4(59.1) 123.4(99.8) 118.0(73.3) 97.2(86.3)

Average 54.7 56.4 42.1 70.3 71.2 59.3 89.4 86.4 76.3

HoG Walking 53.7(31.8) 58.2(23.0) 40.7(30.0) 52.6(45.5) 53.1(31.3) 32.2(7.6) 67.5(32.1) 56.4(30.6) 45.3(35.0)

(C2) Jogging 69.5(34.2) 67.9(32.7) 47.3(26.1) 41.6(14.8) 43.6(13.7) 32.2(7.6) 52.9(26.5) 52.6(20.2) 41.2(16.3)

Gestures 24.6(8.1) 25.9(6.3) 21.6(4.0) 80.6(31.2) 80.1(18.7) 65.3(15.2) 55.3(7.6) 57.1(16.9) 43.8(32.6)

Box 93.3(33.2) 87.1(22.1) 85.5(34.7) 96.4(43.9) 98.4(48.5) 82.1(34.1) 106.3(47.8) 131.6(51.7) 106.1(82.8)

ThrowCatch / / / 66.5(33.8) 59.1(26.2) 51.1(24.6) 87.0(37.2) 104.2(38.8) 89.7(39.1)

Combo / / / 82.9(56.8) 79.6(53.6) 66.4(54.2) 91.6(53.7) 96.5(54.4) 78.5(52.4)

Average 60.3 59.8 48.8 70.1 69.0 54.9 76.8 83.1 67.4

HoG Walking 66.6(49.4) 62.4(28.5) 42.0(33.1) 50.9(36.8) 54.1(26.2) 37.1(20.2) 62.0(30.9) 54.4(26.1) 40.0(20.5)

(C3) Jogging 69.7(36.3) 65.7(26.0) 37.1(20.2) 42.5(16.5) 53.1(31.3) 34.3(10,8) 53.3(26.9) 53.9(21.0) 40.9(15.7)

Gestures 25.0(7.8) 39.2(6.0) 23.6(4.6) 81.9(32.8) 88.2(27.0) 72.9(39.7) 57.9(9.2) 55.4(9.1) 45.9(7.6)

Box 99.0(45.4) 83.8(18.7) 87.1(48.8) 97.1(50.9) 97.1(50.9) 87.1(48.8) 105.8(47.3) 112.1(42.1) 89.0(51.3)

ThrowCatch / / / 67.3(34.6) 62.7(25.6) 52.5(22.1) 96.1(43.7) 98.3(37.3) 94.8(40.8)

Combo / / / 86.4(59.1) 79.8(46.4) 63.9(42.8) 92.8(53.9) 93.2(52.3) 81.5(61.2)

Average 65.1 62.8 47.5 72.1 72.0 58.0 78.0 77.9 65.4

HoG Walking 38.0(12.0) 45.2(14.9) 28.3(8.2) 41.1(26.3) 38.9(19.9) 28.0(12.8) 56.5(25.6) 44.6(19.7) 31.5(14.2)

(C1+C2+C3) Jogging 49.1(17.2) 47.2(18.2) 37.6(19.8) 37.7(12.4) 34.8(11.2) 28.6(6.6) 45.5(18.4) 43.8(14.6) 33.4(11.6)

Gestures 23.7(7.2) 24.9(5.5) 19.1(3.5) 76.9(26.3) 61.6(15.4) 49.2(10.5) 56.1(6.4) 52.3(5.9) 48.9(4.5)

Box 89.0(36.7) 66.9(16.9) 56.9(15.8) 91.3(41.3) 77.0(38.8) 77.2(40.9) 93.3(48.4) 91.6(35.8) 77.2(40.9)

ThrowCatch / / / 58.1(24.8) 58.1(24.7) 40.7(17.3) 93.3(31.7) 86.4(31.0) 85.4(33.2)

Combo / / / 73.0(52.5) 63.3(41.8) 54.7(49.1) 84.3(52.1) 79.7(44.0) 65.6(43.6)

Average 50.0 46.1 35.5 63.0 55.6 46.4 71.5 66.5 57.0

Figs. 10–12. All models are trained on the full dataset and
tested on all motions. We observe that TGPKNN not only
gives lower average joint position error but also smaller
maximum errors in most frames. For example, the maximum
joint position error of TGPKNN is 107.8 mm on walking of
Subject 2 while that of WKNN and GPR are 147.1 mm and
246.7 mm, respectively.

5 Conclusions

We have presented a generally applicable structured pre-
diction method, Twin Gaussian Processes (TGP) to model

correlations among both inputs and outputs in multivari-
ate, continuous valued supervised learning problems. By
accounting for correlations using input-output kernels and
a KL-divergence criterion, prediction becomes less sensi-
tive to data living in low-density regions or far away from
a query. Our experiments show that TGP models trained
jointly, using motion data from multiple human subjects
achieve 5 cm reconstruction error per 3d body joint, on av-
erage, for video sequences in the HumanEva benchmark.
TGP outperforms competitors based on weighted K nearest
neighbors, Gaussian process regression, or predictors based
on Kernel Target Alignment or the Hilbert Schmidt Inde-
pendence Criterion. The results are obtained automatically:

48 Int J Comput Vis (2010) 87: 28–52

Fig. 10 Average joint position
test error for three different
models, and four different
motions, all from Subject 2, as
function of the image frame.
Models are trained on the full
dataset. HoG from the three
cameras are combined in a
single descriptor. WKNN and
TGPKNN use 25 and 800
nearest neighbors, both
cross-validated

no information is required about the camera calibration, the
body proportions of the human subjects or their identity
for training and testing, nor do we need to manually ini-
tialize the pose of the subject in the first frame of each se-
quence.

Future Work. We plan to study alternative kernels and im-
age features, cost functions and hyperparameter optimiza-
tion criteria. Searching for multiple optima rather than a sin-
gle one could also improve the quality of solutions. We used
KNN preprocessing in order to speed up some of the cal-
culations, but optimizing the cost directly using sparse for-
mulations is also feasible. We also plan to apply the method
to other structured prediction problems and extend it to the
case of discrete multivariate outputs.

Acknowledgements This work was supported, in part, by the EC
and the NSF, under awards MCEXT-025481 and IIS-0535140. We

thank Atul Kanaujia for discussions and generous support with feature
extraction, and Roland Poppe for helpful feedback and for gracefully
making available materials from his work (Poppe 2007) for compari-
son.

Appendix: Derivation of the ITGP Cost

Let Bij be the ij -th block of B and C = B22 − B21B−1
11 B12.

The determinant identity of the block matrix can be ex-
pressed as:
∣∣∣∣

[
B11 B12

B21 B22

]∣∣∣∣= |B11| |C| (35)

The inverse identity of block matrix can be expressed as:

[
B11 B12

B21 B22

]−1

Int J Comput Vis (2010) 87: 28–52 49

Fig. 11 Average joint position
test error for three different
models, and four different
motions, all from Subject 1,
function of timestep. Models are
trained on the full dataset. HoG
features from the three cameras
are combined in a single
descriptor

=
[

B−1
11 + B−1

11 B12C−1B21B−1
11 −B−1

11 B12C−1

−C−1B21B−1
11 C−1

]
(36)

Applying (35) to the second and fourth terms of (6), we have

log

∣∣∣∣

[
KX Kx

X

(Kx
X)� KX(x,x)

]∣∣∣∣

= log |KX| − log
[
KX(x,x) + (Kx

X)�K−1
X Kx

X

]
(37)

log

∣∣
∣∣

[
KR Kr

R

(Kr
R)� KR(r, r)

]∣∣
∣∣

= log |KR| + log
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]
(38)

Applying (36) to the third term of (6), we have

Tr

([
KX Kx

X

(Kx
X)� KX(x,x)

][
KR Kr

R

(Kr
R)� KR(r, r)

]−1
)

= Tr
(

KXK−1
R

)

+
[
KX(x,x) − 2(Kx

X)�K−1
R Kr

R

]

×
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]−1

+
[
(Kr

R)�K−1
R KXK−1

R Kr
R

]

×
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]−1
(39)

Adding up (37), (38) and (39), dropping constants not in-
cluding x and r, then multiplying by KR(r, r) −

50 Int J Comput Vis (2010) 87: 28–52

Fig. 12 Average joint position
test error for three different
models, and four different
motions, all from Subject 3, as
function of timestep. Models are
trained on the full dataset. HoG
from the three cameras are
combined in a single descriptor.
WKNN and TGPKNN use 25
and 800 nearest neighbors, both
cross-validated

(Kr
R)�K−1

R Kr
R , we have

A(x, r)

= KX(x,x) − 2(Kx
X)�K−1

R Kr
R

+ (Kr
R)�K−1

R KXK−1
R Kr

R

+
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

× log
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

−
[
KR(r, r) − (Kr

R)�K−1
R Kr

R

]

× log
[
KX(x,x) − (Kx

X)�K−1
X Kx

X

]
(40)

Removing terms that are independent of x (3rd and 4th), we
obtain (14). Removing terms that do not include r (1st term),
we get (19). Replacing corresponding terms with the ones in
the dynamic TGP, we obtain (22).

References

Agarwal, A., & Triggs, B. (2006). Recovering 3d human pose from
monocular images. IEEE transactions on pattern analysis and
machine intelligence.

Bar-Shalom, Y., & Fortman, T. (1988). Tracking and data association.
San Diego: Academic Press.

Battu, B., Krappers, A., & Koenderink, J. (2007). Ambiguity in picto-
rial depth. Perception 36.

Bishop, C., & Svensen, M. (2003). Bayesian mixtures of experts. In
Uncertainty in artificial intelligence, 2003.

Blake, A., North, B., & Isard, M. (1999). Learning multi-class dynam-
ics. Advances in Neural Information Processing Systems, 11, 389–
395.

Bo, L., & Sminchisescu, C. (2008). Twin Gaussian processes for struc-
tured prediction. Snowbird Learning, April.

Bo, L., Sminchisescu, C., Kanaujia, A., & Metaxas, D. (2008). Fast al-
gorithms for large scale conditional 3D prediction. In IEEE con-
ference on computer vision and pattern recognition, 2008.

Brubaker, M., & Fleet, D. (2008). The kneed walker for human pose
tracking. In IEEE international conference on computer vision
and pattern recognition, 2008.

Int J Comput Vis (2010) 87: 28–52 51

Choo, K., & Fleet, D. (2001). People tracking using hybrid Monte
Carlo filtering. In IEEE international conference on computer vi-
sion, 2001.

CMU (2003). Human Motion DataBase. Online at http://mocap.cs.
cmu.edu/search.html.

Cortes, C., Mohri, M., & Weston, J. (2005). A general regression tech-
nique for learning transductions. In International conference on
machine learning (pp. 153–160) 2005.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. S.
(2001a). On kernel-target alignment. In Advances in neural in-
formation processing systems (pp. 367–373) 2001.

Cristianini, N., Shawe-Taylor, J., & Kandola, J. S. (2001b). Spectral
kernel methods for clustering. In Advances in neural information
processing systems (pp. 649–655) 2001.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In IEEE international conference on computer
vision and pattern recognition, 2005.

Deutscher, J., Blake, A., & Reid, I. (2000). Articulated body motion
capture by annealed particle filtering. In IEEE international con-
ference on computer vision and pattern recognition, 2000.

Deutscher, J., Davidson, A., & Reid, I. (2001). Articulated partition-
ing of high dimensional search spaces associated with articulated
body motion capture. In IEEE international conference on com-
puter vision and pattern recognition, 2001.

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987).
Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.

Elgammal, A., & Lee, C. (2004). Inferring 3d body pose from silhou-
ettes using activity manifold learning. In IEEE international con-
ference on computer vision and pattern recognition, 2004.

Geurts, P., Wehenkel, L., & d’Alché Buc, F. (2006). Kernelizing the
output of tree-based methods. In International conference on ma-
chine learning (pp. 345–352) 2006.

Geurts, P., Wehenkel, L., & d’Alché Buc, F. (2007). Gradient boost-
ing for kernelized output spaces. In International conference on
machine learning, New York, NY, USA (pp. 289–296) 2007.

Gretton, A., Bousquet, O., Smola, A. J., & Schölkopf, B. (2005a).
Measuring statistical dependence with Hilbert-Schmidt norms. In
S. Jain & W.-S. Lee (Eds.), Proceedings algorithmic learning the-
ory, 2005.

Gretton, A., Herbrich, R., Smola, A. J., Bousquet, O., & Schölkopf, B.
(2005b). Kernel methods for measuring independence. Journal of
Machine Learning Research, 6, 2075–2129.

Guzman, A. N., & Holden, S. (2007). Twinned Gaussian processes.
In Advances in neural information processing systems, December
2007.

Hinton, G. E., & Roweis, S. T. (2002). Stochastic neighbor embedding.
In Advances in neural information processing systems (pp. 833–
840) 2002.

Isard, M., & Blake, A. (1998). CONDENSATION—conditional den-
sity propagation for visual tracking. International Journal of
Computer Vision.

Kanaujia, A., Sminchisescu, C., & Metaxas, D. (2006). Semi-
supervised hierarchical models for 3D human pose reconstruc-
tion. In IEEE international conference on computer vision and
pattern recognition, 2006.

Kanaujia, A., Sminchisescu, C., & Metaxas, D. (2007). Spectral latent
variable models for perceptual inference. In IEEE International
Conference on Computer Vision, Vol. 1, 2007.

Kehl, R., Bray, M., & Gool, L. V. (2005). Full body tracking from
multiple views using stochastic sampling. In IEEE international
conference on computer vision and pattern recognition, 2005.

Koenderink, J. (1998). Pictorial relief. Philosophical Transactions
Royal Society London A 356.

Koenderink, J., & van Doorn, A. (1979). The internal representation of
solid shape with respect to vision. Biological Cybernetics 32(3).

Krauthgamer, R., & Lee, J. R. (2004). Navigating nets: simple algo-
rithms for proximity search. In SODA ’04: Proceedings of the fif-
teenth annual ACM-SIAM symposium on discrete algorithms (pp.
798–807) 2004.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In International conference on machine learning, 2001.

Lawrence, N. (2005). Probabilistic non-linear component analysis with
Gaussian process latent variable models. Journal of Machine
Learning Research, 6, 1783–1816.

Lee, H. J., & Chen, Z. (1985). Determination of 3D human body pos-
tures from a single view. Computer Vision, Graphics and Image
Processing, 30, 148–168.

Li, R., Yang, M., Sclaroff, S., & Tian, T. (2006). Monocular tracking of
3D human motion with a coordinated mixture of factor analyzers.
In European conference on computer vision, 2006.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2).

Memisevic, R. (2006). Kernel information embeddings. In Interna-
tional conference on machine learning, 2006.

Morris, D., & Rehg, J. (1998). Singularity analysis for articulated ob-
ject tracking. In IEEE international conference on computer vi-
sion and pattern recognition (pp. 289–296) 1998.

Neal, R. (1998). Annealed importance sampling (Technical Report
9805). Department of Statistics, University of Toronto.

Poppe, R. (2007). Evaluating example-based human pose estimation:
Experiments on HumanEva sets. In HumanEva Workshop CVPR,
2007.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for
machine learning. Adaptive computation and machine learning.
Cambridge: MIT Press.

Rosales, R., & Sclaroff, S. (2002). Learning body pose via special-
ized maps. In Advances in neural information processing systems,
2002.

Roth, S., Sigal, L., & Black, M. (2004). Gibbs likelihoods for Bayesian
tracking. In IEEE international conference on computer vision
and pattern recognition, 2004.

Schaal, S., Atkeson, C., & Moore, A. (1997). Locally weighted learn-
ing. Artificial Intelligence Review, 11, 11–73.

Serre, T., Wolf, L., Bileschi, S., & Riesenhuber, M. (2007). Robust ob-
ject recognition with cortex-like mechanisms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(3), 411–426.

Shakhnarovich, G., Viola, P., & Darrell, T. (2003). Fast pose estimation
with parameter sensitive hashing. In IEEE international confer-
ence on computer vision, 2003.

Sidenbladh, H., & Black, M. (2001). Learning image statistics for
Bayesian tracking. In IEEE international conference on computer
vision, 2001.

Sidenbladh, H., Black, M., & Fleet, D. (2000). Stochastic tracking of
3D human figures using 2D image motion. In European confer-
ence on computer vision, 2000.

Sidenbladh, H., Black, M., & Sigal, L. (2002). Implicit probabilistic
models of human motion for synthesis and tracking. In European
conference on computer vision, 2002.

Sigal, L., & Black, M. (2006). HumanEva: synchronized video and mo-
tion capture dataset for evaluation of articulated human motion
(Technical Report CS-06-08). Brown University.

Sigal, L., Balan, A., & Black, M. J. (2007). Combined discriminative
and generative articulated pose and non-rigid shape estimation. In
Advances in neural information processing systems, 2007.

Sminchisescu, C. (2002). Consistency and coupling in human model
likelihoods. In IEEE international conference on automatic face
and gesture recognition (pp. 27–32). Washington, DC, 2002.

Sminchisescu, C., & Jepson, A. (2004a). Generative modeling for con-
tinuous non-linearly embedded visual inference. In International
conference on machine learning (pp. 759–766). Banff, 2004.

http://mocap.cs.cmu.edu/search.html
http://mocap.cs.cmu.edu/search.html

52 Int J Comput Vis (2010) 87: 28–52

Sminchisescu, C., & Jepson, A. (2004b). Variational mixture smooth-
ing for non-linear dynamical systems. In IEEE international con-
ference on computer vision and pattern recognition (Vol. 2, pp.
608–615). Washington, DC, 2004.

Sminchisescu, C., & Telea, A. (2002). Human pose estimation from
silhouettes. A consistent approach using distance level sets. In
WSCG international conference for computer graphics, visualiza-
tion and computer vision, Czech Republic, 2002.

Sminchisescu, C., & Triggs, B. (2001). Covariance-scaled sampling for
monocular 3D body tracking. In IEEE international conference
on computer vision and pattern recognition (Vol. 1, pp. 447–454).
Hawaii, 2001.

Sminchisescu, C., & Triggs, B. (2002a). Building roadmaps of local
minima of visual models. In European conference on computer
vision (Vol. 1, pp. 566–582). Copenhagen, 2002.

Sminchisescu, C., & Triggs, B. (2002b). Hyperdynamics importance
sampling. In European conference on computer vision (Vol. 1, pp.
769–783). Copenhagen, 2002.

Sminchisescu, C., & Triggs, B. (2003). Kinematic jump processes for
monocular 3D human tracking. In IEEE international conference
on computer vision and pattern recognition (Vol. 1, pp. 69–76).
Madison, 2003.

Sminchisescu, C., & Triggs, B. (2005). Mapping minima and transi-
tions in visual models. International Journal of Computer Vision
61(1).

Sminchisescu, C., & Welling, M. (2007). Generalized darting Monte-
Carlo. In Artificial Intelligence and Statistics, Vol. 1, 2007.

Sminchisescu, C., Kanaujia, A., Li, Z., & Metaxas, D. (2005). Condi-
tional visual tracking in kernel space. In Advances in neural in-
formation processing systems, 2005.

Sminchisescu, C., Kanaujia, A., & Metaxas, D. (2006). Learning joint
top-down and bottom-up processes for 3D visual inference. In

IEEE international conference on computer vision and pattern
recognition, 2006.

Sminchisescu, C., Kanaujia, A., & Metaxas, D. (2007). BM3E: dis-
criminative density propagation for visual tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence.

Smola, A. J., & Schölkopf, B. (2000). Sparse greedy matrix approxi-
mation for machine learning. In International conference on ma-
chine learning (pp. 911–918) 2000.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin Markov
networks. In Advances in neural information processing systems,
2004.

Tresp, V. (2000). Mixtures of Gaussian processes. In Advances in
neural information processing systems, 2000.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Sup-
port vector machine learning for interdependent and structured
output spaces. In International conference on machine learning,
2004.

Urtasun, R., Fleet, D., Hertzmann, A., & Fua, P. (2005). Priors for peo-
ple tracking in small training sets. In IEEE international confer-
ence on computer vision, 2005.

Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit. Machine
Learning, 48, 165–187.

Vondrak, M., Sigal, L., & Jenkins, O. C. (2008). Physical simulation for
probabilistic motion tracking. In IEEE international conference
on computer vision and pattern recognition, 2008.

Wang, J., Fleet, D. J., & Hertzmann, A. (2008). Gaussian process dy-
namical models. In IEEE transactions on pattern analysis and
machine intelligence, 2008.

Weston, J., Chapelle, O., Elisseeff, A., Scholkopf, B., & Vapnik, V.
(2002). Kernel dependency estimation. In Advances in neural in-
formation processing systems, 2002.

	Twin Gaussian Processes for Structured Prediction
	Abstract
	Introduction
	Related Work
	Structured Prediction.
	3D Human Pose Reconstruction.
	Organization.

	Twin Gaussian Process Model
	Gaussian Process Regression (GPR)
	Twin Gaussian Processes (TGP)
	Training.
	Prediction.

	Dynamic Twin Gaussian Processes (DTGP)
	Training.
	Prediction.

	Twin Gaussian Process with K Nearest Neighbors

	Kernel Target Alignment and Hilbert-Schmidt Independence Criterion
	Experiments
	Image Features.
	Pose Representation.
	Error Metric.
	Initialization of TGP
	Evaluation of Dynamic TGP
	ITGP, KTA and HSIC
	Evaluation of TGP

	Conclusions
	Future Work.

	Acknowledgements
	Appendix: Derivation of the ITGP Cost
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

