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Abstract. Recently introduced RGB-D cameras are capable of providing high
quality synchronized videos of both color and depth. With its advanced sensing
capabilities, this technology represents an opportunity to dramatically increase
the capabilities of object recognition. It also raises the problem of developing
expressive features for the color and depth channels of these sensors. In this paper
we introduce hierarchical matching pursuit (HMP) for RGB-D data. HMP uses
sparse coding to learn hierarchical feature representations from raw RGB-D data
in an unsupervised way. Extensive experiments on various datasets indicate that
the features learned with our approach enable superior object recognition results
using linear support vector machines.

1 Introduction

Recognizing object instances and categories is a crucial capability for an autonomous
robot to understand and interact with the physical world. Humans are able to recognize
objects despite large variation in their appearance due to changing viewpoints, deforma-
tions, scales and lighting conditions. This ability fundamentally relies on robust visual
representations of the physical world. However, most state-of-the-art object recognition
systems are still based on hand-designed representations (features), such as SIFT [26],
Spin Images [18], SURF [3], Fast Point Feature Histogram [30], LINE-MOD [15], or
feature combinations [20, 7]. Such approaches suffer from at least two key limitations.
Firstly, these features usually only capture a small set of recognition cues from raw
data; other useful cues are ignored during feature design. For instance, the well-known
SIFT features capture edge information from RGB images using a pair of horizonal
and vertical gradient filters while completely ignoring color information. Secondly, the
features have to be re-designed for new data types, or even new tasks, making object
recognition systems heavily dependent on expert experience. It is desirable to develop
efficient and effective learning algorithms to automatically learn robust representations
from raw data.

Recently, several research groups have developed techniques for unsupervised fea-
ture learning from raw vision data [16, 40, 38, 24, 12, 8]. Algorithms such as deep be-
lief nets [16], denoising autoencoders [40], deep Boltzmann machines [38], convolu-
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tional deep belief networks [24], K-Means based feature learning [12, 4], hierarchi-
cal sparse coding [43], and hierarchical matching pursuit [8] have been proposed to
this end. Such approaches build feature hierarchies from scratch, and have exhibited
very impressive performance on many types of recognition tasks such as handwritten
digit recognition [16, 40, 38], face recognition [24], tiny image recognition [12], object
recognition [24, 12, 43, 8], event recognition [8] and scene recognition [8]. However,
the current applications are somewhat limited to 2D images, typically in grayscale.

Recently introduced RGB-D cameras are capable of providing high quality syn-
chronized videos of both color and depth. With its advanced sensing capabilities, this
technology represents an opportunity to dramatically increase the capabilities of object
recognition. It also raises the problem of developing expressive features for the color
and depth channels of these sensors. Inspired by the success of our previous work, hi-
erarchical matching pursuit (HMP) for image classification, we propose unsupervised
feature learning for RGB-D based object recognition by making hierarchical match-
ing pursuit suitable for color and depth images captured by RGB-D cameras. HMP
learns dictionaries over image and depth patches via K-SVD [2] in order to represent
observations as sparse combinations of codewords. With the learned dictionary, feature
hierarchies are built from scratch, layer by layer, using orthogonal matching pursuit
and spatial pyramid pooling [8]. Two major innovations are introduced in this work: (1)
Unsupervised feature learning on both color and depth channels; (2) spatial pyramid
pooling over sparse codes from both layers of the HMP hierarchy. Extensive evalua-
tions on several publicly available benchmark datasets [20, 10, 39] allowed us to gain
various experimental insights: unsupervised feature learning from raw data can yield
recognition accuracy that is superior to state-of-the-art object recognition algorithms,
even to ones specifically designed and tuned for textured objects; the innovations in-
troduced in this work significantly boost the performance of HMP applied to RGB-D
data; and our approach can take full advantage of the additional information contained
in color and depth channels.

2 Related Work

This research focuses on hierarchical feature learning and its application to RGB-D ob-
ject recognition. In the past few years, a growing amount of research on object recog-
nition has focused on learning rich features using unsupervised learning, hierarchical
architectures, and their combination.
Deep Networks: Deep belief nets [16] learn a hierarchy of features by training multi-
ple layers recursively using the unsupervised restricted Boltzmann machine. This pre-
training phase has been shown to avoid shallow local minima. The learned weights are
then further adjusted to the current task using supervised information. To make deep
belief nets applicable to full-size images, Lee et al. [24] proposed convolutional deep
belief nets that use a small receptive field and share the weights between the hidden and
visible layers among all locations in an image. Invariant predictive sparse decompo-
sition [17, 19] approximates sparse codes from sparse coding approaches using multi-
layer feed-forward neural networks and avoid solving computationally expensive opti-
mizations at runtime. Stacked denoising autoencoders [40] build deep networks, based
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on stacking layers of denoising autoencoders that train one-layer neural networks to
reconstruct input data from partial random corruption. Deconvolutional networks [44]
reconstruct images using a group of latent feature maps in a convolutional way under
a sparsity constraint. These approaches have been shown to yield competitive perfor-
mance with the SIFT based bag-of-visual-words model on object recognition bench-
marks such as Caltech-101.
Single Layer Sparse Coding: Sparse coding [31] on top of raw images/patches has
been developed for face recognition [1], digit recognition [28] and texture segmenta-
tion [27]. More recently. researchers have shown that single layer sparse coding on
top of SIFT features achieves state-of-the art performance on more challenging ob-
ject recognition benchmarks [23, 42, 41, 9, 12, 43]. Yang et al. [42] learn sparse codes
over SIFT features instead of raw image patches using sparse coding approaches. Their
comparisons suggested that such an approach significantly outperforms the standard
bag-of-visual-words model. Wang et al. [41] presented a fast implementation of local
coordinate coding that computes sparse codes of SIFT features by performing local
linear embedding on several nearest codewords in a codebook learned by K-Means.
Boureau et al. [9] compared many types of recognition algorithms, and found that the
SIFT based sparse coding approaches followed by spatial pyramid max pooling work
very well, and macrofeatures can boost recognition performance further. Coates and
Ng [12] evaluated many feature learning approaches by decomposing them into train-
ing and encoding phases, and suggested that the choice of architecture and encoder
is the key to a feature learning system. Yu et al. [43] showed that hierarchical sparse
coding at pixel level achieves similar performance with SIFT based sparse coding.
Feature Learning for RGB-D: Kernel descriptors [6] learn patch level feature de-
scriptors based on kernels comparing manually designed pixel descriptors such as gra-
dients, local binary patterns or colors. Adapting this view to depth maps and 3D points,
RGB-D kernel descriptors are proposed in [5, 7], and the experiments showed that they
obtain higher recognition accuracy than hand-designed feature sets on the RGB-D ob-
ject dataset [20]. By adapting K-Means based feature learning proposed by Coates and
Ng [12] to the RGB-D setting, Blum and colleagues showed that it is possible to learn
RGB-D descriptors from raw data that are competitive with RGB-D kernel descriptors
on the RGB-D object dataset [4].

3 Unsupervised Feature Learning

This section provides an overview of our feature learning architecture. We review the
key ideas behind dictionary learning and discuss our two-layer architecture to generate
features over complete RGB-D images.

Building on our previous work on feature learning for object recognition [8], we
propose two innovations to make the approach suitable for RGB-D based object recog-
nition. Firstly, we perform feature learning on both color and depth images. The orignal
HMP work [8] uses grayscale images only, insufficient in many cases: color is distinc-
tively useful for object instance recognition where appearance details matter, and the
depth channel in RGB-D can greatly improve object category recognition and its ro-
bustness. We learn dictionaries and encode features using full RGB-D data: gray, RGB,
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depth and surface normal channels. Secondly, as described in Section 3.2, we extract
features not only from the top of the feature hierarchy, but also from lower layers.

3.1 Dictionary Learning via K-SVD

The key idea of sparse coding is to learn a dictionary, which is a set of vectors, or codes,
such that the data can be represented by a sparse, linear combination of dictionary
entries. In our case, the data are patches of pixel values in RGB-D frames. For instance,
a dictionary for 5×5 RGB-D patches would contain vectors of size 5× 5× 8, where
the last component is due to grayscale intensity, RGB, depth and surface normal values.
Grayscale intensity values are computed from the associate RGB values and normal
values are computed from the associated depth values and their coordinates.

K-SVD [2] is a popular dictionary learning approach that generalizes K-Means.
It learns dictionaries D = [d1, · · · ,dm, · · · ,dM] and the associated sparse codes X =
[x1, · · · ,xn, · · · ,xN ] from a matrix Y of observed data by minimizing the reconstruction
error

min
D,X

‖Y −DX‖2
F s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ K (1)

Here, the notation ‖A‖F denotes the Frobenius norm, the zero-norm ‖ · ‖0 counts the
non-zero entries in the sparse codes xn, and K is the sparsity level controlling the number
of the non-zero entries. When the sparsity level is set to be 1 and the sparse code matrix
is forced to be a binary(0/1) matrix, K-SVD exactly reproduces the K-Means algorithm.

K-SVD solves the optimization problem (1) in an alternating manner. During each
iteration, the current dictionary D is used to encode the data Y by computing the sparse
code matrix X . Then, the codewords of the dictionary are updated one at a time, re-
sulting in a new dictionary. This new dictionary is then used in the next iteration to
recompute the sparse code matrix followed by another round ot dictionary update. We
now briefly outline these steps, see [2, 8] for details.
Computing the sparse code matrix via orthogonal matching pursuit: Given the
current dictionary D, optimizing the sparse code matrix X can be decoupled into N sub-
problems; one for each data item yn. The sparse code xn for each item yn is computed
efficiently using orthogonal matching pursuit (OMP) [34], a greedy algorithm. In each
iteration, OMP selects the codeword dm that best matches the current residual, which
is the reconstruction error remaining after the codewords chosen thus far. In the first
iteration, this residual is exactly the observation yn. Once the new codeword is selected,
the observation is orthogonally projected onto the span of all the previously selected
codewords and the residual is recomputed. The procedure is repeated until the desired
K codewords are selected. In our unsupervised feature learning setting, a large number
of image patches share the same dictionary and the total cost of OMP can be reduced by
its batch version that keeps some quantities in memory to save computational cost [13,
36, 8].
Updating the dictionary via singular value decomposition: Given the sparse code
matrix X , the dictionary D is optimized sequentially via Singular Value Decomposition
(SVD). In the m-th step, the m-th codeword and its sparse codes can be computed by
performing SVD of the residual matrix corresponding to that codeword. This matrix
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Fig. 1. Dictionaries learned for different channels. From left to right: Grayscale intensity, RGB,
depth, 3D surface normal (3 normal dimensions color coded as RGB). The codeword sizes are
5x5x1 for grayscale intensity and depth values, and 5x5x3 for RGB and surface normal values.
Dictionary sizes are 75 for grayscale intensity and depth values, and 150 for RGB and surface
normal values.

contains the differences between the observations and their approximations using all
other codewords and their sparse codes. To avoid introducing new non-zero entries in
the sparse code matrix X , the update process only considers observations that use the m-
th codeword. It can be shown that each iteration of sparse coding followed by dictionary
updating decreases the reconstruction error (1). In practice, K-SVD converges to good
dictionaries for a wide range of initializations [2].

In our hierarchical matching pursuit, K-SVD is used to learn dictionaries at two lay-
ers, where the data matrix Y in the first layer consists of patches sampled from RGB-D
images, and Y in the second layer are sparse codes pooled from the first layer (details
below). Fig. 1 visualizes the learned dictionaries in the first layer for four channels:
grayscale and RGB for RGB images, and depth and surface normal for depth images.
As can be seen, the learned dictionaries have very rich appearances and include sepa-
rated red, green, blue colors, transition filters between different colors, gray and color
edges, gray and color texture filters, depth and normal edges, depth center-surround
(dot) filters, flat normals, and so on, suggesting many recognition cues of raw data are
well captured.

Once dictionaries are learned via K-SVD, sparse codes can be computed for new
images using orthogonal matching pursuit or the more efficient batch tree orthogonal
matching pursuit [8]. Fig. 2 shows an example of an RGB / depth image pair along with
reconstructions achieved for different levels of sparsity. The shown results are achieved
by non-overlapping 5x5 reconstructed patches. As can be seen, a sparsity level of K = 5
achieves results that are virtually indistinguishable from the input data, indicating that
this technique could also be used for RGB-D compression, alternative to [37]. For object
recognition, the sparse codes become the features representing the image or segment,
as we describe next.
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Fig. 2. Reconstructed images using the learned dictionaries. Left: Original RGB and depth im-
ages. Middle: Reconstructed RGB and depth images using only two codewords per 5x5 patch.
Right: Reconstructions using five codewords.

3.2 Hierarchical Matching Pursuit

With the learned dictionaries D, hierarchical matching pursuit builds a feature hierarchy
by applying the orthogonal matching pursuit encoder recursively (Fig. 3). This encoder
consists of three modules: batch orthogonal matching pursuit, pyramid max pooling,
and contrast normalization (see also [8]).
First Layer: The goal of the first layer is to generate features for image patches whose
size is typically 16× 16 pixels or larger. Each pixel in such a patch is represented by
the sparse codes computed for the pixel and a small neighborhood (for instance, 5× 5
pixel region). Spatial pyramid max pooling is then applied to these sparse codes to gen-
erate patch level features. Spatial pyramid max pooling partitions an image patch P into
multiple level spatial cells. The features of each spatial cell C are the max pooled sparse
codes, which are simply the component-wise maxima over all sparse codes within a
cell:

F(C) =
[

max
j∈C

|x j1|, · · · ,max
j∈C

|x jm|, · · · ,max
j∈C

|x jM|
]

(2)

Here, j ranges over all entries in the cell, and x jm is the m-th component of the sparse
code vector x j of entry j. Note that F(C) has the same dimensionality as the original
sparse codes. The feature FP describing a 16x16 image patch P are the concatenation of
aggregated sparse codes in each spatial cell

FP =
[
F(CP

1 ), · · · ,F(CP
s ), · · · ,F(CP

S )
]

(3)

where CP
s ⊆ P is a spatial cell generated by spatial pyramid partitions, and S is the

total number of spatial cells. As an example, we visualize spatial cells generated by a 3
level spatial pyramid pooling on a 16× 16 image patch in Fig. 4. In this example, the
dimensionality of the pooled feature vector FP is (16 + 4 + 1)M, where M is the size
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Fig. 3. Hierarchical matching pursuit for RGB-D object recognition. In the first layer, sparse
codes are computed on small patches around each pixel. These sparse codes are pooled into
feature vectors representing 16×16 patches, by spatial pyramid max pooling. The second layer
encodes these feature vectors using a dictionary learned from sampled patch level feature vectors.
Whole image features are generated from sparse codes of both first and second layers.

of the dictionary (see also Fig. 3). The main idea behind spatial pyramid pooling is to
allow the features FP to encode different levels of invariance to local deformations [24,
42, 8], thereby increasing the discrimination of the features.

We additionally normalize the feature vectors FP by their L2 norm
√
‖FP‖2 + ε ,

where ε is a small positive number. Since the magnitude of sparse codes varies over a
wide range due to local variations in illumination and occlusion, this operation makes
the appearance features robust to such variations, as commonly done in the hand-
designed SIFT features. We found that ε = 0.1 works well for the recognition problems
we considered.
Second Layer: The goal of the second layer in HMP is to generate features for a whole
image/object. To do so, HMP applies the sparse coding and max pooling steps to image
patch features FP generated in the first layer. The dictionary for this level is learned
by sampling patch features FP over RGB-D images. To extract the feature describing
a whole image, HMP first computes patch features via the first layer (usually, these
patches cover 16× 16 pixels and are sampled with a step size of 4× 4 pixels). Then,
just as in the first layer, sparse codes of each image patch are computed using batch
orthogonal matching pursuit, followed by spatial max pooling (3× 3, 2× 2, and 1× 1
cell sizes). However, in this layer, we perform max pooling over the sparse codes and
the patch level features computed in the first layer:

G(C) =
[

max
j∈C

|z j1|, · · · ,max
j∈C

|z jU |,max
j∈C

|Fj1|, · · · ,max
j∈C

|FjV |
]

(4)

Here, C is a cell and Fj and z j are the patch features and their sparse codes, respectively.
U and V are the dimensionality of z j and Fj, where U is given by the size of the layer
two dictionary, and V is given by the size of the patch level feature (3). Jointly pooling
z j and Fj integrates both fine-grained cues captured by the codewords in the first layer
and coarse-grained cues by those in the second layer, increasing the discrimination of
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Fig. 4. Spatial pyramid partitions. Each black dot denotes sparse codes of a pixel that are com-
puted on a 5× 5 small patch around this pixel using batch orthogonal matching pursuit. Left:
Level 2. The 16× 16 image patch is partitioned into 4× 4 = 16 spatial cells. Each cell is repre-
sented by the component-wise maximum of the sparse codes of pixels within the cell. Middle:
Level 1. The 16× 16 image patch is partitioned into 2× 2 = 4 spatial cells. Here, maxima are
computed over the level 2 cells. Right: Level 0. The whole 16× 16 image patch is one spatial
cell. The concatenation of C1 through C21 gives the max pooled feature for the whole patch.

the features (joint pooling improves results over those reported in our original HMP
work [8]).

The features of the whole image/object are the concatenation of the aggregated
sparse codes within each spatial cell. The image feature vector GI is then normalized
by dividing with its L2 norm

√
‖GI‖2 +0.0001.

It should be noted that hierarchical matching pursuit is a fully unsupervised feature
learning approach: no supervision (e.g. object class) is required for dictionary learning
and feature coding. The feature vectors GI of images/objects and their corresponding
labels are then fed to classifiers to learn recognition models.

4 Experiments

We evaluate our RGB-D hierarchical matching pursuit framework on three publicly
available RGB-D object recognition datasets and two RGB object recognition datasets.
We compare HMP to results achieved by state-of-the-art algorithms published with
these datasets. For all five datasets, we follow the same training and test procedures
used by the corresponding authors on their respective data.

In the first layer, we learn the dictionaries of size 75 with sparsity level 5 on 1,000,000
sampled 5×5 raw patches for grayscale and depth channels, and dictionaries of size 150
on 1,000,000 sampled 5×5×3 raw patches for RGB and normal channels using K-SVD
(see their visualizations in Fig. 1). We remove the zero frequency component from raw
patches by subtracting their means. With these learned dictionaries, we compute sparse
codes of each pixel (5×5 patch around it) using batch OMP with sparsity level 5, and
generate patch level features by max pooling over 16× 16 image patches with 4× 4,
2×2, and 1×1 partitions. Note that this architecture leads to fast computation of patch
level features.
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In the second layer, we learn the dictionaries of size 1,000 with sparsity level 10 on
1,000,000 sampled 16×16 patch level features for all four channels using K-SVD. With
these learned dictionaries, we compute sparse codes of image patches that are densely
sampled from the whole image with a step size of 4×4 pixels. We then pool both patch
level features and their sparse codes on the whole image with 3× 3, 2× 2, and 1× 1
partitions to generate the image level features. The final image feature vectors are the
concatenation of those from all four channels, resulting in a feature size of 188,300
dimensions.

The above hyperparameters are optimized on a subset of the RGB-D object recog-
nition dataset we collected. We empirically found that they work well on different
datasets. In the following experiments, we will keep these values fixed, even though
the performance might improve via tuning these parameters for each dataset using cross
validation on the associated training data. With the learned HMP features, linear support
vector machines (SVMs) are trained for recognition. Linear SVMs are able to match the
performance of nonlinear SVMs with the popular histogram intersection kernel [29]
while being scalable to large datasets [8].

4.1 RGB-D Object Dataset

The first dataset, called RGBD, contains 41,877 RGB-D images of 300 physically dis-
tinct everyday objects taken from different viewpoints [20]. The objects are organized
into 51 categories arranged using WordNet hypernym-hyponym relationships. The ob-
jects in the dataset are segmented from the background by combining color and depth
segmentation cues. The RGBD dataset is challenging since it not only contains textured
objects such as food bags, soda cans, and cereal boxes, but also texture-less objects
such as bowls, coffee mugs, fruits, or vegetables. In addition, the data frames in RGBD
additionally exhibit large changes in lighting conditions.

Object Recognition. We distinguish between two types of object recognition tasks: in-
stance recognition and category recognition. Instance recognition is to recognize known
object instances. Category recognition is to determine the category name of a previously
unseen object. Each object category consists of a number of different object instances.
Following the experimental setting in [20], we randomly leave one object instance out
from each category for testing, and train models on the remaining 300 - 51 = 249 objects
at each trial for category recognition. We report the accuracy averaged over 10 random
train/test splits. For instance recognition, we train models on images captured from 30◦

and 60◦ elevation angles, and test them on the images of the 45◦ angle (leave-sequence-
out).

We compare HMP with the baseline [20], kernel descriptors [7], convolutional k-
means descriptors (CKM Desc) [4], and the original HMP [8] (features from the second
layer only; grayscale and depth, but no color and normal) in Table 1. The recognition
systems developed in [20, 7, 22] use a rich set of manually designed features. As can be
seen, HMP outperforms all previous approaches for both category and instance recog-
nition. For instance recognition, features learned on color images substantially improve
the performance relative to those on grayscale images.
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RGBD Category Instance
Methods RGB Depth RGB-D RGB Depth RGB-D

ICRA11 [20] 74.3±3.3 53.1±1.7 81.9±2.8 59.3 32.3 73.9
Kernel descriptors [7, 22] 80.7±2.1 80.3±2.9 86.5±2.1 90.8 54.7 91.2

CKM Desc [4] N/A N/A 86.4±2.3 82.9 N/A 90.4
HMP [8] 74.7±2.5 70.3±2.2 82.1±3.3 75.8 39.8 78.9
This work 82.4±3.1 81.2±2.3 87.5±2.9 92.1 51.7 92.8

Table 1. Comparisons with the baseline [20], kernel descriptors [7], convolutional k-means de-
scriptor [4] and the original HMP [8].

Fig. 5. Left: category recognition accuracy as a function of the filter size. Middle: instance recog-
nition accuracy by using features on grayscale images (Gray), features on color images (RGB)
from the second layer only, features on color images from both layers (RGB+). Right: two tomato
instances confused by our approach.

We performed additional experiments to shed light on different aspects of our ap-
proach. Fig. 5 (left) shows category recognition accuracy as a function of the patch size
in the first layer. A larger patch size helps to improve the accuracy, but becomes sat-
urated around 5× 5. In Fig. 5 (middle), we show instance recognition accuracy using
features on grayscale images and features on color images from the second layer only,
and features on color images from both layers. As can be seen, features on color im-
ages work much better than those on grayscale images. This is expected since color
information plays an important role for instance recognition. Object instances that are
distinctive in the color space may have very similar appearance in grayscale space. We
investigated the object instances misclassified by HMP, and found that most of the mis-
takes are from fruits and vegetables. Two misclassified tomatoes are shown in Fig. 5.
As one can see, these two tomato instances are so similar that even humans struggle to
tell them apart. If such objects are excluded from the dataset, our approach has more
than 95% accuracy for instance recognition on the RGBD dataset.

We also investigate recognition accuracies using features from the first layer only,
from the second layer only, and from both layers. We observe that integrating features
from both layers improves performance by about 2 percents. Features from the second
layer are better than those from the first layer for category recognition while features
from the first layer are better than the second layer for instance recognition. This makes
sense intuitively, since coarse-grained information (second layer) is more important for
category recognition whereas fine-grained information (first layer) is more important
for instance recognition.
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Technique MedPose MedPose(C) MedPose(I) AvePose AvePose(C) AvePose(I) Test Time(s)
NN 144.0◦ 105.1◦ 33.5◦ 109.6◦ 98.8◦ 62.6◦ 54.8

Indep Tree 73.3◦ 62.1◦ 44.6◦ 89.3◦ 81.4◦ 63.0◦ 0.31
OPTree 62.6◦ 51.5◦ 30.2◦ 83.7◦ 77.7◦ 57.1◦ 0.33

This work 20.0◦ 18.7◦ 18.0◦ 53.6◦ 47.5◦ 44.8◦ 0.51
Table 2. Pose estimation error (in degrees) and running time (in seconds) comparison of sev-
eral approaches. Indep Tree is a tree of classifiers where each level is trained as independent
linear SVMs, NN is nearest neighbor regressor, and OPTree is the Object-Pose Tree proposed
in [21]. Median pose accuracies for MedPose, MedPose(C) and MedPose(I) are 88.9%, 89.6%
and 90.0%, respectively. Mean pose accuracies for AvePose, AvePose(C) and AvePose(I) are
70.2%, 73.6% and 75.1%, respectively.

Pose Estimation. We further evaluated the HMP features for pose estimation, where
the pose of every view of every object is annotated as the angle about the vertical axis.
Each object category has a canonical pose that is labeled as 0◦, and every image in the
dataset is labeled with a pose in [0,360◦]. Similar to instance recognition, we use the
30◦ and 60◦ viewing angle sequences as training set and the 45◦ sequence as test set. For
efficiency, we follow an independent tree approach to estimate pose, where each level
is trained as an independent classier [21]: Firstly, one-versus-all category classifiers are
trained in the category level; secondly, one-versus-all instance classifiers are trained in
the instance level within each category; and finally one-versus-all pose classifiers in the
pose level are trained within each instance. At test time, category, instance and pose
classifiers are run in turn to estimate the pose of a query object.

Table 6 shows pose estimation errors under three different scenarios. We report
both median pose (MedPose) and mean pose (AvePose) errors because the distribution
across objects is skewed [21]. For MedPose and AvePose, pose errors are computed on
the entire test set, where test images that were assigned an incorrect category or instance
label have a pose error of 180.0◦. MedPose(C) and AvePose(C) are computed only on
test images that were assigned the correct category by the system, and, MedPose(I) and
AvePose(I) are computed only on test images that were assigned the correct instance
by the system. We compare HMP to our previous results [21]. As can been seen from
Table 2, with our new HMP features, pose estimation errors are significantly reduced
under all scenarios, resulting in only 20◦ median error even when classification errors
are measured as 180.0◦ offset. We visualize test images and the best matched images in
Fig. 6. The results are very intuitive: estimations are quite accurate for non-symmetric
objects and sometimes inaccurate for symmetric objects for which different poses could
share very similar or exactly same appearances.

4.2 Willow and 2D3D Datasets

We evaluated HMP on two other publicly available RGB-D recognition datasets. The
first dataset, 2D3D, consists of 156 object instances organized into 14 categories [10].
The authors of this dataset also use a large set of 2D and 3D manually designed shape
and color features. SVMs are trained for each feature and object class, followed by
multilayer perceptron learning to combine the different features. The second dataset,
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Fig. 6. Test images and the best matched images using HMP features.

Fig. 7. Ten of the thirty-five textured household objects from the Willow dataset

Willow, contains objects from the Willow and Challenge datasets for training and
testing, respectively [39]. Both training and test data contain 35 rigid, textured, house-
hold objects captured from different views by Willow Garage. The authors present a
processing pipeline that uses a combination of SIFT feature matching and geometric
verification to perform recognition of highly textured object instances [39]. Note that
2D3D and Willow only contain highly textured objects.

We report the results of HMP in Table 3. Following the experimental setting in [10],
HMP yields 91.0% accuracy for category recognition, much higher than the 82.8% re-
ported in [10]. Learning models on training data from the Willow dataset and testing
them on the training data from the Challenge dataset [39], HMP achieves higher preci-
sion/recall than the system proposed in [39], which won the 2011 Perception Challenge
organized by Willow Garage. Note that that system is specifically designed for textured
objects and thus could not, in contrast to our learned features, be applied to untextured
objects such as those found in the RGBD dataset.

4.3 Learning and Vision Datasets

We also tested our model on the feature learning dataset STL-10 [11] and on the vi-
sion dataset MITScenes-67 [35]. We used the same architecture for these datasets
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2D3D Category Recognition Willow Instance Recognition
Methods RGB Depth RGB-D Methods Precision/Recall

ICCVWorkshop [10] 66.6 74.6 82.8 ICRA12 [39] 96.7/97.4
This work 86.3 87.6 91.0 This work 97.4/100.0

Table 3. Comparisons with the previous results on the two public datasets: Willow and 2D3D.

STL-10 MITScenes-67
VQ [11] 54.9±0.4 GIST-color [32] 29.7 OB [25] 37.6
SC [12] 59.0±0.8 DPM [14] 30.4 RBoW [33] 37.9

Learned RF [12] 60.1±1.0 SPM [32] 34.4 DPM+Gist-color+SPM [32] 43.1
This work 64.5±1.0 SC [8] 36.9 This work 47.6

Table 4. Comparisons with the previous results on the STL-10 and MITScenes-67.

as for RGB-D datasets. The dictionaries are learned on both RGB and grayscale chan-
nels and the final features are the concatenation of HMP features from these two chan-
nels. Following the standard setting in [11], we train linear SVMs on 1000 images and
test on 8000 images using our HMP features and report the averaged accuracy over
10 pre-defined folds by the authors. As can be seen in Table 4, HMP achieves much
higher accuracy than the receptive field learning algorithm [12] that beat many types
of deep feature learning approaches as well as single layer sparse coding on top of
SIFT (SC) [12]. Training linear SVMs on 80 images and testing on 20 images per
category on the pre-defined training/test split by the authors, HMP achieves higher ac-
curacy than many state-of-the-art algorithms: spatial pyramid matching (SPM) [32],
deformable parts models (DPM) [14], object bank (OB) [25], Reconfigurable Models
(RBoW) [33], and even the combination of SPM, DPM, and color GIST [32].

5 Conclusions

We demonstrated that recent advances in unsupervised feature learning make it possi-
ble to learn very rich features from raw RGB-D data. Our approach, HMP, consistently
outperforms state-of-the-art techniques on five benchmark datasets. Importantly, even
though HMP is designed fsor very general object recognition, it even outperforms tech-
niques specifically designed for highly textured objects, when applied to such data.
These results are extremely encouraging, indicating that current recognition systems
can be significantly improved without resorting to careful, manual feature design. We
believe this work opens up many possibilities for learning rich, expressive features from
raw RGB-D data. In the current implementation, we manually designed the architecture
of HMP. Automatically learning such structure is interesting but also very challenging
and left for future work. Our current experience is that learning dictionaries separately
for each channel works better than learning them jointly. We plan to explore other pos-
sibilities of joint dictionary learning in the future.
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