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Abstract. Based on rank-1 update, Sparse Bayesian Learning Algorithm
(SBLA) is proposed. SBLA has the advantages of low complexity and high
sparseness, being very suitable for large scale problems. Experiments on
synthetic and benchmark data sets confirm the feasibility and validity of the
proposed algorithm.

1   Introduction

Regression problem is one of the fundamental problems in the field of supervised
learning. It can be thought of as estimating the real valued function from a samples set
of noise observation. A very successful approach for regression is Support Vector
Machines (SVMs) [1-2]. However, they also have some disadvantages [3]:

 To derive analytically error bars for SVMs is very difficult.
 The solution is usually not very sparse.
 Kernel function must satisfy Mercer’s condition.
In order to overcome the above problems, Relevance Vector Machine (RVM) [3] is

proposed, which is very elegant and obtains a high sparse solution. However, RVM
needs to solve linear equations, whose cost is very expensive, and therefore not
feasible for large scale problems.

Based on rank-1 update, we propose Sparse Bayesian Learning Algorithm (SBLA),
which has low complexity and high sparseness, thus being very suitable for large
scale problems. Experiments on synthetic and benchmark data sets confirm the
feasibility and validity of SBLA.

2   Model Specification

Let { }1 1( , ), ( , )l lz y y= x x be empirical samples set drawn from

( , ) , 1, 2,i i iy f i lε= + =x w , (1)
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where iε  is independent samples from some noise process which is further assumed

to be mean-zero Gaussian with variance 2σ . We further assume

1

( , ) ( , )
l

i i
i

f w k
=

=∑x w x x . (2)

According to Bayesian inference, the posterior probability of w  can be expressed as
( | ) ( )

( | )
( )

P z P
P z

P z
= w w

w . (3)

Due to the assumption of independence of z , Likelihood ( | )P z w  can be written as

2 / 2
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If Gaussian prior 2 / 2
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lP πγ

γ
 
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w w
w is chosen, maximizing the log-

posterior is equivalent to minimizing the following likelihood function

( ) ( )( )( )ˆ arg min , 2T T TL λ λ= = + −w w w K K I w wK y . (5)

where 2 2λ σ γ= , I  is unit matrix.

3   Sparse Bayesian Learning Algorithm

For large datasets, the classic methods for quadratic programming such as conjugate
gradient methods [4] are not feasible, due to the requisite time and memory costs. The
following greedy approximation scheme can be used. Starting with an empty set
P = ∅  and set {1, 2, }Q l= , we select at each iteration a new basis function s  from

Q , and resolve the problem (5) containing the new basis function and all previously
picked basis functions. The basis function is deleted when the removing criterion is
satisfied and the algorithm is terminated when certain criterion is satisfied.

3.1   Adding One Observation

Let ( )T λ= +H K K I  and T=b K y , then (5) can be rewritten as

( ) ( )( )ˆ arg min , 2TL λ= = −w w w Hw wb . (6)

Assume that 1{ , , }nP p p= , 1 1( )t
PP

− −=R H , and 
1

[ , ]
n

T
s p s p sH H=h  at the

( 1)tht −  iteration. If the ths  basis function is added in tht  iteration, in terms of a

rank-1 update [5], we have
1
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where 1t
s

−=β R h , 1( )T
ss sHα −= − h β . Thus the weights can be updated by the

following equations
1
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Together with 1 1t t
P P
− −=w R b , we have
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The rest major problem is how to pick the appropriate basis function at each
iteration. A natural idea is to choose ths  basis function for which we have the biggest
decrease in the objective function, which is called pre-fitting [6]. However its cost is
too expensive. Here we adopt a cheap selection criterion that is also used in numerical
algebra [7]

( )( )max t
k

k Q
s abs g

∈
= . (10)

where 
1

n
t t
k kj j k

j

g w y
=

= −∑K .

3.2   Removing One Observation

Let ( , )t sR  represent the matrix with the ( )th
sP  observation deleted at the tht  iteration.

In terms of a rank-1 update, we have
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Together with t t
P P=w R b , (12) is simplified as
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Then the problem is how to pick an appropriate basis function at each iteration. Let
( , )t kf  be the objective value with the ( )th

kP  observation deleted, we have
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Substituting (11) into (14), we obtain
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By the virtue of 
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Thus we can obtain s  by

( )( , )arg min t k

k P
s f

∈
= ∆ . (17)

If ( , )t sf∆  is smaller than some threshold ε , the corresponding basis function will
be removed. The algorithm is terminated if the number of removed observations is
larger than some threshold M .

 Accordingly, Sparse Bayesian Learning Algorithm can be described as the
following

Sparse Bayesian Learning Algorithm

1. Let 0 T=w 0 , 0 = −g y , {1,2,3, , }Q l= , {}P = , 1t = ;

2. ( )arg max ( )t
Q

k Q
s abs

∈
= g ;

3.   Add the ths  observation and update tR  and tw  according to (7) and (9);

4. { }Q Q s= − , { }P P s= + ;

5.   ( )( , )arg min t k

k P
s f

∈
= ∆ ;

6.   If ( , )t sf ε∆ ≤ , remove the observation s  and update tR  and tw  according to (11)

and (13), { }P P s= − ;

7.   If the stop criterion is satisfied, stop.

8.   t t
Q QP P=g K w , 1t t= + , goto 2;

Fig. 1. Sparse Bayesian Learning Algorithm.

3.3   Parameters Selection

Let minL  be the minimal value of likelihood function, we have

( )min 0TL l+ ≈y y . (18)

Then, the average contribution of one observation for minL  is about T ly y . Let
T l Tε = y y . If the decrease of the cost function is smaller than T l Ty y  after the ths

observation be deleted, we will remove it. If the number of removed observations is
larger than M , the algorithm is terminated. The common choice of T  and M  is 410

and 10l . λ  can be fixed to 310− .
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3.4   Complexity of Algorithms

Calculating sh and updating R  and Qg  are operations of cost ( )O nl , 2( )O n  and

( ( ))O n l n− , respectively. Therefore, the single step computational complexity of

SBLA is only ( )O nl  and successive ( )n M+  iterations incur a computational cost of
2( )O n l nMl+ . Note that SBLA has low complexity since ,n M l . Besides that, the

memory footprint of the algorithms is also only ( )O nl .

4   Simulation

In order to evaluate the performance of the proposed algorithm, we performed three
experiments on synthetic and benchmark data sets. Data sets for regression come from
STATLOG COLLECTION. For the sake of comparison, different algorithms used the
same input sequence. The elements of Gram matrix K  were constructed using the

Gaussian kernel function of the form 
2

2
2

( , ) exp( )
2

k
σ
−

=
x y

x y . In all experiments, λ ,

T  and M  was fixed to 310− , 410  and 10l , respectively. Kernel width σ  was chosen
by 10-fold cross validation procedure.

The Sinc function sin( ) / (0,1)y x x Nσ= +  is a popular choice of illustrating
support vector machines regression. Training samples were generated from Sinc
function at 100 equally-spaced x-value in [-10,10] with added Gaussian noise of
standard deviation 0.1. Results were averaged over 100 random instantiations of the
noise, with the error being measured over 1000 noise-free test samples in [-10,10].
The decision functions and support vectors obtained by our algorithm and SVMs are
shown in Fig. 4.1.

  

Fig. 2. Decision functions and support vectors by SBL and SVMs. Real lines denote the
decision functions and circles denote support vectors.

For the Boston Housing data set, we averaged our results over 100 random split of
the full dataset into 481 training samples and 25 testing samples. For the Abalone data
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set, we averaged our results over 10 random splits of the mother dataset into 3000
training samples and 1177 testing samples. Before experiments, we scaled all the
training data in [-1,1] and then adjusted test data using the same linear transformation.
The results are summarized in Table 1.

Table 1. Results obtained by SBLA and SVMs. NSV denotes the number of support vector.

MSE denotes the mean squared error. For Sinc problem, unit of error is 310− .

SBLA SVMs

Problem ( , )λ σ NSV MSE ( , )C σ NSV MSE

Sinc

3 1.5(10 ,2 )−

13.99 ± 1.93 0.89 ± 0.41
1 1.5(2 ,2 ) 35.03 ± 4.87 1.24 ± 0.53

Housing

3 0.5(10 ,2 )−

62.35 ± 4.80 10.58 ± 6.91
3 0.5(2 ,2 ) 162.40 ± 3.34 10.54 ± 8.17

Abalone

3 0.5(10 ,2 )− −

30.9 ± 4.12 4.48 ± 0.25
1 0.5(2 ,2 )−

1188 ± 47.12 4.48 ± 0.25

SBLA and SVMs obtained similar generalization ability; however, the solution of
SBLA is much sparser than that of SVMs.

5   Conclusion

SBLA offers a simple and computationally efficient scheme for supervised learning.
Its application is by no mean limited to regression problem. Work on classification
problem is in progress.
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