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Abstract. In least squares support vector (LS-SVM), the key challenge lies in the 
selection of free parameters such as kernel parameters and tradeoff parameter. 
However, when a large number of free parameters are involved in LS-SVM, the 
commonly used grid search method for model selection is intractable. In this 
paper, SLOO-MPS is proposed for tuning multiple parameters for LS-SVM to 
overcome this problem. This method is based on optimizing the smooth leave- 
one-out error via a gradient descent algorithm and feasible to compute. Extensive 
empirical comparisons confirm the feasibility and validation of the SLOO-MPS. 

1  Introduction 

In classification learning, we are given a set of samples of input vector along with 
corresponding output, and the task is to find a deterministic function that best repre-
sents the relation between the input-output pairs. The presence of noise (including input 
noise and output noise) implies that the key challenge is to avoid over-fitting on the 
training samples.  

A very successful approach for classification is Support Vector Machines (SVMs) 
[1-2] that attempt to minimize empirical risk while simultaneously maximize the 
margin between two classes. This is a highly effective mechanism for avoiding 
over-fitting, which leads to good generalization ability. At present, SVMs have been 
widely used in pattern recognition, regression estimation, probabilistic density esti-
mation and time series prediction. In this paper, we focus on least squares support 
vector machine (LS-SVM) [3-4], where one uses equality constraints instead of ine-
quality constraints and a least squares error term in order to obtain a linear set of 
equations in the dual space. This expression is close related to regularization networks. 

In LS-SVM, the key challenge lies in the selection of free parameters, i.e. kernel 
parameters and tradeoff parameter. A popular approach to solve this problem is grid 
search [5] where free parameters are firstly discretized in an appropriate interval, and 
then model selection criterion is performed on every parameters vector. The computa-
tional complexity of this approach increases exponentially with the number of free 
parameters. As a result it becomes intractable when a large number of free parameters 
are involved. 

Motivated from that leave-one-out error of LS-SVM can be expressed as closed 
form, we propose an algorithm, named SLOO-MPS for tuning multiple parameters for 
LS-SVM. SLOO-MPS is constructed by two steps, i.e. replacing step function in 
leave-one-out error with sigmoid function and optimizing the resulting smooth 
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leave-one-out error via a gradient descent algorithm. Extensive empirical comparisons 
confirm the feasibility and validation of the SLOO-MPS. 

2  Least Squares Support Vector Machine 

In this section, we briefly introduce least squares support vector machine. For more 
details, the interested reader can refer to [6]. In the feature space, LS-SVM models take 
the form 

( )Ty ϕ= w x  (1) 

where the nonlinear mapping ( )ϕ x  maps the input data into a higher dimensional 

feature space whose dimensionality can be infinite. Note that the bias is ignored in our 
formulation. In LS-SVM, the following optimization problem is formulated 
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For computational convenience, the form ( ) ( )T
i jϕ ϕx x  in (3) is often replaced with a 

so-called kernel function ( ) ( ) ( )K , T
i j i jϕ ϕ=x x x x . Then (3) is translated into (4) 
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where I  denotes a unit matrix. According to KKT condition, the equality 

1
C
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holds true.  
Any kernel function that satisfies the Mercer�s theorem can be expressed as the inner 

product of two vectors in some feature space and therefore can be used in LS-SVM.  

3  Smooth Leave-One-Error for LS-SVM 

Cross-validation is a method for estimating generalization error based on re-sampling. 
The resulting estimate of generalization error is often used for choosing free parame-
ters. In k -fold cross-validation, the available data are divided into k  subsets of 
(approximately) equal size. Models are trained k  times, each time leaving out one of 
the subsets from training. The k -fold cross-validation estimate of generalization error 
is mean of the testing errors of k  models on the removed subset. If k  equals the 
samples size, it is called leave-one-out cross-validation that has been widely studied 
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due to its mathematical simplicity. Let kf  be the residual error for the thk  training 
samples during the thk  iteration of the leave-one-out cross validation procedure. Then 
the following theorem holds true. 

Theorem 1. [7]: ( )1
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element of 1−H . Define 

( ) ( )1 1D− −=f H y H" , (6) 

where"  denotes elementwise division. According to Theorem 1, leave-one-out error 
of LS-SVM is given by 
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where θ  denotes free parameters of kernel function and ( )sgn x  is 1, if 0x ≥ , 

otherwise ( )sgn x  is -1. There exists a step function ( )sgn i  in leave-one-out error 

( )loo θ ; thereby, it is not differentiable. In order to use a gradient descent approach to 

minimize this estimate, we approximate the step function by a sigmoid function 
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where we set 10γ = . Then smooth leave-one-out error can be expressed as 
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According to the chain rule, the derivative of ( )loo θ  is formulated as 
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In terms of (11), (10) is translated into 
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where ⊗  denotes elementwise multiplication The major difficulty to calculate 
kθ
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f  

lies in obtaining the derivative of 1−H . A good solution is based on the equal-
ity: 1− =H H I . Differentiating that with respect to kθ , we have 
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where ( )D A  denotes diagonal elements of matrix A . Combining (12) and (14), we 

can compute the derivative of smooth leave-one-out error with respect to kθ . 

4  Empirical Study 

In this section, we will employ SLOO-MPS to tune the weights of the linear mixture 
kernel 

2
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where the mixing weights are positive to assure the positive semidefiniteness of H . 
Since the weights of mixing kernel can be adjusted, it is reasonable to fix C  to 1. 
Conjugate gradient algorithm is used to optimize the smooth leave-one-out error (10). 

Kernel matrices are constructed by Gaussian and Laplace kernel 
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Three kinds of mixing schemes are evaluated. The first scheme is to mix 5 Gaussian 
kernels with {0.01,0.1,1,10,100}β ∈ . The second scheme is to mix 5 Laplace kernels 
with {0.01,0.1,1,10,100}β ∈ . The third scheme is to mix 5 Gaussian kernels and 5 
Laplace kernel with {0.01,0.1,1,10,100}β ∈ . Thus all the free parameters of LS-SVM 
can be selected by SLOO-MPS, hence our algorithm is very automatic. 

In order to how well SLOO-MPS woks, we test it on the ten benchmark data sets 
from UCI Machine learning Repository [8]. These data sets have been extensively used 
in testing the performance of diversified kinds of learning algorithms. One-against-one 
method is used to extend LS-SVM to multi-class classifiers. Ten-fold cross validation 
errors on benchmark data sets are summary in Table 1. 
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Table 1. Ten-fold cross validation errors on benchmark data sets. 

Problems Size Dim Class Gaussian Laplace Mix 
Australian Credit 690 15 2 15.22 14.20 14.15 

Breast Cancer 277 9 2 23.74 26.24 23.89 
German 1000 20 2 23.50 23.50 23.50 

Glass 214 9 6 29.87 21.00 21.23 
Heart 270 13 2 17.41 14.07 14.41 

Ionosphere 351 34 2 4.86 5.99 4.14 
Liver disorders 345 6 2 29.89 25.82 25.97 

Vehicle 846 18 4 17.38 20.45 17.50 
Vowel 528 10 11 0.95 1.57 0.76 
Wine 178 13 3 1.11 1.70 1.11 
Mean / / / 16.39 15.45 14.67 

From Table 1, we can see that mix kernel is better than either of Gaussian or Laplace 
kernel. This suggests that Gaussian and Laplace kernels indeed provide complementary 
information for the classification decision and SLOO-MPS approach is able to find a 
combination that exploits this complementarity. 

We also test SLOO-MPS on the Olivetti Research Lab (ORL) face data set in Cam-
bridge (http://www.cam-orl.co.uk/facedatabase.html). The ORL data set contains 40 
distinct subjects, with each containing 10 different images taken at different time, with 
the lighting varying slightly. The experiment is similar to that done by Yang [9]. The 
leave-one-out errors for different method are summarized in Table 2. We can see that 
our method obtain the best performance on this data set. 

Table 2. Performance on benchmark data sets. 

Method Reduced Space Misclassification Rate 
Eigenface 40 2.50 
Fisherface 39 1.50 

ICA 80 6.25 
SVM, d=4 N/A 3.00 

LLE # neighbor=70 70 2.25 
ISOMAP, 10ε =  30 1.75 

Kernel Eigenface, d=2 40 2.50 
Kernel Eigenface, d=3 40 2.00 
Kernel Fisherface (P) 39 1.25 
Kernel Fisherface (G) 39 1.25 

SLOO-MPS(Mix) N/A 0.75 

5  Conclusion 

SLOO-MPS is presented for tuning the multiple parameters for LS-SVM. Empirical 
comparisons show that SLOO-MPS works well for the various data sets. 
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