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Abstract. Gaussian Processes (GPs) have state of the art performance in 
regression. In GPs, all the basis functions are required for prediction; hence its 
test speed is slower than other learning algorithms such as support vector 
machines (SVMs), relevance vector machine (RVM), adaptive sparseness (AS), 
etc. To overcome this limitation, we present a backward elimination algorithm, 
called GPs-BE that recursively selects the basis functions for GPs until some 
stop criterion is satisfied. By integrating rank-1 update, GPs-BE can be 
implemented at a reasonable cost. Extensive empirical comparisons confirm the 
feasibility and validity of the proposed algorithm. 

1   Introduction 

Covariance functions have a great effect on the performance of GPs. The experiments 
performed by Williams [1] and Rusmussen [2] have shown that the following 
covariance function works well in practice 
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where pθ  is scaling factor. If some variable is unimportant or irrelevant for 

regression, the associated scaling factor will be made small; otherwise it will be made 
large.  

The key advantage of GPs is that the hyperparameters of covariance function can 
be optimized by maximizing the evidence. This is not appeared in other kernel based 
learning methods such as support vector machines (SVMs) [3]. In SVMs, an extra 
model selection criterion, e.g. cross validation score is required for choosing 
hyperparameters, which is intractable when a large number of hyperparameters are 
involved. Though GPs are very successful, they also have some shortages: (1) the 

computational cost of GPs is ( )3O l , where l  is the size of training samples, which 

seems to prohibit the applications of GPs to large datasets; (2) all the basis functions 
are required for prediction; hence its test speed is slower than other learning 
algorithms such as SVMs, relevance vector machine (RVM) [4], adaptive sparseness 
(AS) [5], etc. 

Some researchers have tried to deal with the shortages of GPs. In 2000, Smola et 
al. [6] presented sparse greedy Gaussian processes (SGGPs) whose computational 
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cost is ( )2O kn l , where n  is the number of basis functions and k  is a constant factor. 

In 2002, Csató et al. also proposed sparse on-line Gaussian processes (SOGPs) [7] 
that result in good sparseness and low complexity simultaneously. However，both 
SGGPs and SOGPs throw away the key advantage of GPs. As a result, they have 
difficulties in tackling the hyperparameters. 

This paper focuses on the second shortage of GPs above. We propose a backward 
elimination algorithm (GPs-BE) that recursively selects the basis functions with the 
smallest leave-one-out score at the current step until some stop criterion is satisfied. 
GPs-BE has reasonable computational complexity by integrating rank-1 update 
formula. GPs-BE is performed after GPs is trained; hence all the advantages of GPs 
are reserved. Extensive empirical comparisons show that our method greatly reduces 
the number of basis functions of GPs almost without sacrificing the performance. 

2   Gaussian Processes 

Let ( ){ }
1

,
l

i i i
y

=
=Z x be l  empirical samples set drawn from 

( ), , 1,2,i i iy f i lε= + =x w L  (2.1) 

where iε  is independent sample from some noise process which is further assumed to 

be mean-zeros Gaussian with variance 2σ . We further assume 
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According Bayesian inference, the posterior probability of w  can be expressed as 
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Maximizing the log-posterior is equivalent to minimizing the following objective 
function 

( ) ( )( )( )2ˆ arg min , 2T T TL λ σ= = + −w w w C C I w wC y  (2.4) 

where I  is the identity matrix. Hyperparameters are chosen by maximizing the 
following evidence 
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In the related Bayesian models, this equality is known as the marginal likelihood, 
and its maximization is known as the type-Ⅱmaximum likelihood method [8]. 
Williams [9] has demonstrated that this model is equivalent to Gaussian Processes 

(GPs) with the covariance ( )2 Tσ +I CC ; hence we call it GPs in this paper. 



 Sparse Gaussian Processes Using Backward Elimination 1085 

3   Backward Elimination for Gaussian Processes 

In GPs, all the basis functions are used for prediction; therefore it is inferior to neural 
networks, SVMs and RVM in testing speed, which seems to prohibit its application in 
some fields. Here, GPs-BE is proposed to overcome this problem that selects the basis 
function by a backward elimination technique after training procedure. GPs-BE is a 
backward greedy algorithm that recursively removes the basis function with the 
smallest leave-one-out score at the current step until some stop criterion is satisfied. 

For convenience of derivation, we reformulate (2.6) into 

1−=w H b  (3.1) 

where 2( )T σ= +H C C I  and T=b C y . Let ( )kfΔ  be the increment of L  with the thk  

training sample deleted and then the following theorem holds true. 

Theorem 3.1: 
( )2

( ) kk

kk

w
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R
, where 1−=R H , kkR  denotes the thk  diagonal 

element of 1−H . 

We call ( )kfΔ  leave-one-out score. At each step, we will remove the basis function 

with the smallest leave-one-out score. The index of the basis function to be deleted 
can be obtained by 

( )( )arg min k

k P
s f

∈
= Δ , (3.2) 

where P  is a set of the indices of the remainder basis functions. Note that the (l+1)-th 
variable, i.e. the bias, is preserved during the backward elimination process. 

When one basis function is deleted, we require updating the matrix R  and the 
vector w . In terms of a rank-1 update, ( )sR  and ( )sw  can be formulated as 
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Together with =w Rb ,  (3.4) is simplified as 
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Suppose that tΔ  is the increment of f  at the t-th iteration, and then we will terminate 

the backward elimination procedure if 

t fεΔ ≤  (3.6) 

where we set 0.01ε = . The detailed backward elimination procedure is summarized 
in Figure 3.1. 
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Agorithm1: GPs-BE 
1. Compute the index of basis function to be removed by (3.2); 
2. Update the matrix R  and the vector w  by (3.3) and (3.5); 
3. Remove the index resulting from step 1; 
4. If (3.6) is satisfied, Stop; otherwise, go to Step 1. 

Fig. 3.1. Flow chart of backward elimination 

4   Empirical Study 

In order to evaluate the performance of GPs-BE, we compare it with GPs, GPs-U, 
SVM, RVM and AS on four benchmark datasets, i.e. Friedman1 [10], Boston Housing, 
Abalone and Computer Activity [11]. GPs-U denotes GPs whose covariance function 
has the same scaling factors. Before experiments, all the training data are scaled in [-1, 
1] and the testing data are adjusted using the same linear transformation. For Friedman1 
and Boston Housing data sets, the results are averaged over 100 random splits of the full 
datasets. For Abalone and Computer Activity data sets, the results are averaged over 10 
random splits of the mother datasets. The free parameters in GPs, GPs-BE and GPs-U 
are optimized by maximizing the evidence. The free parameters in RVM, SVMs and AS 
are selected by 10-fold cross validation procedure. 

Table 4.1. Characteristics of four benchmark datasets 

Abrr. Problem Attributes Total 
Size 

Training 
Size 

Testing 
Size 

FRI Friedman1 10 5240 240 5000 

BOH Boston Housing 13 506 481 25 

ABA Abalone 8 4117 1000 3117 
COA Computer Activity 21 8192 1000 7192 

Table 4.2. Mean of the testing errors of six algorithms 

Problem GPs GPs-BE GPs-U RVM SVMs AS 
FRI 0.46 0.47 2.62 2.84 2.68 2.80 

BOH 9.23 9.31 9.67 9.92 10.66 10.02 
ABA 4.61 4.65 4.63 4.62 4.72 4.68 
COA 6.61 6.68 11.65 11.41 11.34 12.09 

Table 4.3. Mean of the number of basis functions of six algorithms on benchmark datasets 

Problem GPs GPs-BE GPs-U RVM SVMs AS 
FRI 240.00 63.00 240.00 70.90 178.30 78.70 

BOH 481.00 116.00 481.00 52.88 165.73 60.9 
ABA 1000.00 15.70 1000.00 11.00 470.70 11.1 
COA 1000.00 86.70 1000.00 47.80 357.90 43.6 
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Table 4.4. Runtime of six algorithms on benchmark datasets 

Problem GPs GPs-BE GPs-U RVM SVMs AS 
FRI 217.53 228.78 453.70 1652.05 1246.32 290.35 

BOH 8012.57 8439.69 9946.76 26922.98 47005.36 7639.03 
ABA 4457.84 4687.31 6922.70 13093.14 39631.06 4440.03 
COA 6591.48 6849.81 7373.28 15150.28 67127.36 5183.14 

 

From Table 4.2 we know that GPs-BE and GPs obtain similar generalization 
performance and are significantly better than GPs-U, RVM, SVMs and AS in the two 
regression tasks, i.e. Friedman1and Computer Activity. As for the remaining two 
tasks, all the six approaches have similar performance. Since GPs-U is often superior 
to SGGPs and SOGPs in terms of the generalization performance, GPs-BE is 
expected to have the better generalization performance than SGGPs and SOGPs.Table 
4.3 show that the number of basis functions of GPs-BE approaches that of RVM and 
AS, and is significantly smaller than that of GPs, GPs-U and SVMs. Table 4.4 show 
that the runtime of GPs-BE approaches that of GPs, GPs-U and AS, and is 
significantly smaller than that of GPs, GPs-U and SVMs.  

An alternative is to select the basis functions using the forward selection proposed 
by [12-13]. Table 4.5 compares our method with forward selection in the same stop 
criterion. 

Table 4.5. Comparison of backward elimination and forward selection 

Problem Backward Elimination Forward Selection 
FRI 0.47 63.00 0.47 69.30 

BOH 9.31 116.00 9.33 131.72 
ABA 4.65 15.70 4.66 20.20 
COA 6.68 86.70 6.71 97.40 

Normalized 
Mean 0.998 0.864 1.000 1.000 

Table 4.5 shows that the backward elimination outperforms the forward selection 
in the performance and the number of basis functions in the same stop criterion. 

In summary, GPs-BE greatly reduces the number of basis functions of GPs almost 
without sacrificing the performance and increasing the runtime. Moreover, GPs-BE is 
better than GPs-U in performance, which further indicates the performance of GPs-
BE is better than that of SGGPs and SOGPs. GPs-BE is better than SVMs in all the 
three aspects. GPs-BE is also better than RVM and AS in performance with the 
similar number of basis functions and runtime. Finally, the backward elimination 
outperforms the forward selection in the same stop criterion. 

5   Conclusion 

This paper presents a backward elimination algorithm to select the basis functions for 
GPs. By integrating rank-1 update, we can implement GPs-BE at a reasonable cost. 
The results show that GPs-BE greatly reduces the number of basis functions of GPs 
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almost without sacrificing the performance and increasing the runtime. Comparisons 
with forward selection show that GPS-BE obtains better performance and smaller 
basis functions in the same stop criterion. 

This research is supported by National Natural Science Foundation of China under 
grant 60372050 and 60133010 and National “973” Project grant 2001CB1309403. 
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