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Kernel fisher discriminant analysis (KFD) is a successful approach to
classification. It is well known that the key challenge in KFD lies in
the selection of free parameters such as kernel parameters and regular-
ization parameters. Here we focus on the feature-scaling kernel where
each feature individually associates with a scaling factor. A novel al-
gorithm, named FS-KFD, is developed to tune the scaling factors and
regularization parameters for the feature-scaling kernel. The proposed
algorithm is based on optimizing the smooth leave-one-out error via a
gradient-descent method and has been demonstrated to be computation-
ally feasible. FS-KFD is motivated by the following two fundamental
facts: the leave-one-out error of KFD can be expressed in closed form and
the step function can be approximated by a sigmoid function. Empirical
comparisons on artificial and benchmark data sets suggest that FS-KFD
improves KFD in terms of classification accuracy.

1 Introduction

Fisher linear discriminant analysis (Fisher, 1936; Fukunaga,1990) is a clas-
sical classifier whose fundamental idea is to maximize the between-class
scatter while minimizing the within-class scatter simultaneously. In many
applications, Fisher linear discriminant analysis has proved to be very pow-
erful. However, for real-world problems, only linear discriminant analysis
is not good enough. Mika, Ratsch, and Weston (1999) and Mika (2002) intro-
duced a class of nonlinear Fisher discriminant analysis using kernel tricks,
named KFD. Extensive empirical comparisons have shown that KFD is com-
parable to other kernel-based classifiers, such as support vector machines
(SVMs) (Vapnik, 1995, 1998) and least-squares support vector machines
(LS-SVMs) (Gestel et al., 2002; Suykens & Vandewalle, 1999).
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For kernel-based learning algorithms, the key challenge lies in the selec-
tion of kernel parameters and regularization parameters. Many researchers
have identified this problem and tried to solve it. Weston et al. (2001) per-
formed feature selection for SVMs by combining the feature scaling tech-
nique with the leave-one-out error bound. Chapelle, Vapnik, Bousquet, and
Mukherjee (2002) tuned multiple parameters for two-norm SVMs by mini-
mizing the radius margin bound or the span bound. Ong and Smola (2003)
applied semidefinite programming to learn kernel function by hyperkernel.
Lanckriet, Cristianni, Bartlett, Ghaoui, and Jordan (2004) designed kernel
matrix directly by semidefinite programming. All of these algorithms have
proved to be effective and boosted the development of this field.

We focus here on tuning the scaling factors of the feature scaling kernel
(Williams & Barber, 1998; Krishnapuram, Hartemink, Carin, & Figueiredo,
2004). Two of the most popular feature-scaling kernels are polynomial
kernel and gaussian kernel, as given below:

Kθ (xi , x j ) =
(

1 +
d∑

k=1

θkx(k)
i x(k)

j

)r

, (1.1)

Kθ (xi , x j ) = exp

(
−

d∑
k=1

θk

∥∥∥x(k)
i − x(k)

j

∥∥∥2
)

. (1.2)

In a feature-scaling kernel, each feature has its own scaling factor. If some
feature is insignificant or irrelevant for classification, the associated scaling
factor will be set smaller; otherwise, it will be set larger.

Cawley and Talbot (2003) gave a closed form of the leave-one-out error of
KFD and demonstrated that it was superior to n-fold cross-validation error
in terms of computational complexity. Motivated by this fact, we develop
a novel algorithm, named FS-KFD, to tune multiple parameters for the
feature-scaling kernel. FS-KFD is constructed in two steps: replacing the
step function in the leave-one-out error with a sigmoid function and then
optimizing the resulting smooth leave-one-out error via a gradient-descent
algorithm. In FS-KFD, all the free parameters are analytically chosen, so the
learning process is fully automatic. Extensive experimental comparisons
show that FS-KFD improves the performance of KFD in the presence of
many irrelevant features and obtains good classification accuracy.

The remainder of the letter is organized as follows. In section 2, kernel
Fisher discriminant analysis is briefly reviewed. The expressions for the
smooth leave-one-out error and for its derivative are given in section 3.
FS-KFD is extended to multiclass classification in section 4. In section 5,
the experimental results are reported. The direction of future research is
indicated in section 6.
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2 Kernel Fisher Discriminant Analysis

For real-world problems, linear discriminant analysis is not enough. Mika
et al. constructed the linear discriminant analysis in the feature space in-
duced by a Mercer kernel, thus implicitly yielding a nonlinear discrim-
inant analysis in the input space. The leading model is named KFD,
in which two scatter matrices—between-class scatter matrix and within-
class scatter matrix—are defined by SF

b = (mF
1 − mF

2 )(mF
1 − mF

2 )T and SF
w =∑2

i=1
∑li

j=1(�(xi
j ) − mF

i )(�(xi
j ) − mF

i )T , where the mean mF
i of the ith class

is mF
i = 1

li

∑li
j=1 �(xi

j ). An optimal transformation w is given by maximizing
the between-class scatter while simultaneously minimizing the within-class
scatter:

max
w

(
wT SF

b w
wT SF

w w

)
. (2.1)

In terms of reproducing kernel theory (Aronszajn, 1950), w can be formu-
lated as w = ∑l

j=1 α j�(x j ). With equation 2.1, we can calculate α by
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α
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)
, (2.2)

where S̄F
b = (m̄F
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It can be seen that KFD is equivalent to finding the leading eigenvector
of (S̄F

w )−1 S̄F
b . To improve numerical stability and generalization ability, we

replace S̄F
w with S̄F

w + λI, where λ is a regularization constant and I is an
identity matrix. For a new sample x, we can predict its label by

g(x) = sgn((w·�(x)) + b) = sgn


 l∑

j=1

α j K(x j , x) + b


 , (2.3)

where b = −αT l1m̄F
1 +l2m̄F

2
l .

3 Optimization of the Smooth Leave-One-Out Cross-Validation Error

Let us denote the leave-one-out error by �(x1, y1, . . . , xl , yl ). It is well known
that the leave-one-out error is almost an unbiased estimate of the expected
generalization error.
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Lemma 1 (Luntz & Brailovsky, 1969; Schölkopf & Smola, 2002).

E
(

pl−1
error

)
= E

(
1
l
�(x1, y1, . . . , xl , yl )

)
,

where pl−1
error is the probability of test error for the model trained on samples of size

l − 1 and the expectations are taken over the random choice of the samples.

This lemma suggests that the leave-one-out error is a good estimate
for the generalization error. However, the leave-one-out cross validation
is rarely adopted in a medium- or large-scale application due to its high
computational cost; it requires running the training algorithm l times. The
training algorithms for kernel machines, such as KFD, typically require
a computational cost of O(l3). In this case, the computational cost of the
leave-one-out cross-validation procedure is O(l4), which quickly becomes
intractable as the number of training samples increases. Fortunately, there
exists a computationally efficient implementation for the leave-one-out
cross-validation procedure in KFD, which only a computational cost of
incurs O(l3).

Xu, Zhang, and Li (2001) showed that KFD is equivalent to minimizing
the following loss function,

f (ᾱ) = ᾱT (CT C + λU)ᾱ − 2ᾱT CT y + yT y, (3.1)

where ᾱ = [ α

b ], C = [K 1], U = [ I 0
0T 0 ], and I denotes the unit matrix.

Let gi (x) be the ith kernel Fisher classifier constructed from the data
set excluding the ith training sample. Defining the residual error by
ri = yi − gi (xi ) for the ith training sample, Cawley and Talbot (2003) demon-
strated the following:

Lemma 2. r = (I − H) y� (1 − D(H)), where H = C(CT C + λU)-1CT ,
D(H) denotes the diagonal elements of H , and � denotes element-wise division.

A straightforward corollary of lemma 2 is that the leave-one-out error
of KFD can be computed at a cost of O(l3). This indicates that it is feasible
to apply leave-one-out model selection to a medium-size problem. In the
following, we will discuss the smooth leave-one-out error derived by re-
placing the step function with a sigmoid function. According to lemma 2,
the leave-one-out error of KFD is given by

loo(θ , λ) = 1
l

l∑
i=1

(
1 − yi sign (yi − ri )

2

)
, (3.2)
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where sign (a ) is 1 if a ≥ 0; otherwise, sign(a ) is −1. From equation 3.2, we
observe that there exists a step function sign (·) in loo(θ , λ), implying that it
is not differentiable. In order to use a gradient-descent method to minimize
this estimate, we approximate the step function by a sigmoid function,

tanh(γ t) = exp (γ t) − exp (−γ t)
exp (γ t) + exp (−γ t)

, (3.3)

where we set γ to be 10. Then the smooth leave-one-out error can be ex-
pressed as

loo(θ , λ) = 1
l

l∑
i=1

(
1 − yi tanh (γ (yi − ri ))

2

)
. (3.4)

Figure 1 shows the leave-one-out error and the smooth leave-one-out
error on the Breast Cancer data set. It can be seen from Figure 1 that the
smooth leave-one-out error successfully follows the trend of the leave-one-
out error. Thus, we can expect that a small, smooth leave-one-out error
guarantees good generalization ability.

According to the chain rule, the derivative of loo(θ , λ) is formulated as

∂(loo(θ , λ))
∂θk

= ∂(loo(θ , λ))
∂rT

∂r
∂θk

. (3.5)

It follows that we need only to calculate ∂(loo(θ ,λ))
∂rT and ∂r

∂θk
, respectively.

With ∂(tanh(t))
∂t = sec h2(t), we have

∂ (loo (θ , λ))
∂rT

=
(

γ y ⊗ sec h2 (γ (y − r))
2l

)T

, (3.6)

where ⊗ denotes an element-wise proxduct. The derivative of r with respect
to θk is given by

∂r
∂θk

= −
(

∂H
∂θk

y
)

� (1 − D (H))

+ ((I − H) y) � (1 − D (H)) � (1 − D (H)) ⊗ D
(

∂H
∂θk

)
. (3.7)
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Figure 1: (A) Variation of the leave-one-out error with log 2(λ) on the Breast
data set. (B) Variation of the smooth leave-one-out error with log 2(λ) on the
Breast data set.

The derivative of H with respect to θk is given by

∂H
∂θk

= ∂C
∂θk

(
CT C + λU

)−1
CT + C

∂
(
CT C + λU

)−1

∂θk
CT

+ C
(
CT C + λU

)−1 ∂CT

∂θk
. (3.8)

Now let us focus on computing ∂(CT C+λU)−1

∂θk
. A good solution is based on the

equality: T−1T = I (Bengio, 2000). Differentiating both sides of the equation
with respect to θk and then isolating ∂T−1

∂θk
, we have

∂T−1

∂θk
= −T−1 ∂T

∂θk
T−1. (3.9)
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Substituting CT C + λU for T, we have

∂
(
CT C + λU

)−1

∂θk
= − (

CT C + λU
)−1 ∂

(
CT C + λU

)
∂θk

(
CT C + λU

)−1

= − (
CT C + λU

)−1
(

∂CT

∂θk
C + CT ∂C

∂θk

) (
CT C + λU

)−1

(3.10)

Combining equations 3.5, 3.6, 3.7, 3.8, and 3.10, we can compute the deriva-
tive of the smooth leave-one-out error with respect to θk .

The derivative of H with respect to λ is given by

∂H
∂λ

= − (
CT C + λU

)−1 (
CT C + λU

)−1
. (3.11)

So we can compute the derivative of loo(θ , λ) with respect to λ in a similar
manner. From the derivation, it can be easily verified that the computational
complexity of FS-KFD is

# (Iteration) × # (free parameters) × l3. (3.12)

4 Extension to Multiclass Classification

In this section, we attempt to extend FS-KFD to multiclass classification
using the one-against-all scheme that has been independently devised by
several researchers. Rifkin and Klautau (2004) carefully compared the one-
against-all scheme with some other popular multiclass schemes and con-
cluded that it is as accurate as any other scheme if the underlying binary
classifiers are well-tuned, regularized classifiers.

One-against-all reduces a c-class problem to c binary problems. For the
sth binary problem, all samples labeled yi = s are considered positive sam-
ples and the others negative samples. For a new sample prediction, c clas-
sifiers are run, and the classifier that outputs the largest value is chosen.

Let g(s)(xi ) denote the output of the sth binary classifier on a sample xi .
According to the one-against-all scheme, the predicted label for xi is

ŷi = arg max
s∈{1,...,c}

(
g(s) (xi )

)
. (4.1)

Thus, the leave-one-out error of multiclass classification can be written as

mloo(θ ,λ) = 1
l

l∑
i=1

(
1 − equal

(
yi , arg max

s

(
g(s)(xi )

)))
, (4.2)
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where equal (a , b) = 1 if a = b; otherwise equal (a , b) = 0, and yi ∈
{1, 2, . . . , c}. It becomes intractable to approximate equation 4.2 by a sigmoid
function due to the discontinuity of the inner function arg maxs(g(s)(xi )).
In the following, we consider an alternative strategy where the upper
bound of the leave-one-out error of multiclass classification is
optimized.

Theorem 1. Let loo(s) denote the leave-one-out error of the sth binary classifier. If
the one-against-all scheme is used, the following inequality holds:

mloo ≤
c∑

s=1

loo(s)
. (4.3)

Proof. If all c binary classifiers classify the sample xi correctly, we have

y(s)
i g(s) (xi ) > 0, s = 1, . . . , c, (4.4)

where y(s)
i = 1, if yi = s; otherwise y(s)

i = −1. Inequality 4.4 can be further
simplified to

{
g(yi ) (xi ) > 0

g(s) (xi ) < 0, s �= yi
. (4.5)

Since only the output of the yith classifier is greater than zero, we have

arg min
s

(
g(s) (xi )

)
= yi . (4.6)

This means that if all c binary classifiers classify the sample xi correctly, the
final multiclass classifier also classifies xi correctly. The equivalent propo-
sition is that if the multiclass classifier classifies xi incorrectly, there exists
at least one binary classifier misclassifying xi . This completes the proof of
theorem 1.

This theorem allows us to control the leave-one-out error of multiclass
classification by controlling the sum of the leave-one-out error of all the
binary classifiers. Three multiclass schemes can be derived by considering
whether the kernel parameters and the regularization parameters are shared
by all the binary classifiers.

In the first scheme, all the binary classifiers share the kernel parameters
and the regularization parameters (Hsu & Lin, 2002; Rifkin & Klautau,
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2004). The sum of the smooth leave-one-out errors of c binary classifiers can
be formulated as

sloo (θ , λ) =
c∑

s=1

(
loo(s) (θ , λ)

)
. (4.7)

loo(s)(θ , λ) can be expanded into

loo(s) (θ, λ) = 1
l

l∑
i=1


1 − y(s)

i tanh
(
γ

(
y(s)

i − r (s)
i

))
2


, (4.8)

where r (s)
i is the residual error on the ith sample for the sth binary problem.

The derivative of sloo(θ , λ) with respect to θk is given by

∂(sloo(θ , λ))
∂θk

=
c∑

s=1

∂(loo(s)(θ , λ))
∂(r(s))T

∂r(s)

∂θk
, (4.9)

where

∂(loo(s)(θ , λ))

∂
(
r(s)

)T =
(

γ y(s) ⊗ sec h2(γ (y(s) − r(s)))
2l

)T

, (4.10)

∂r(s)

∂θk
=−

(
∂H
∂θk

y(s)
)

� (1 − D(H))

+ ((I − H)y(s)) � (1 − D(H)) � (1 − D (H)) ⊗ D
(

∂H
∂θk

)
(4.11)

Thus, we can compute the derivative of sloo (θ , λ) with respect to θk by
combining equations 4.9, 4.10, and 4.11. The derivative of sloo (θ , λ) with
respect to λ can be computed in a similar manner. It is easily checked that
the computational complexity of this multiclass scheme is the same as that
of FS-KFD for binary classification since all the binary classifiers share H.

In the second scheme, only the kernel parameters are shared. As a result,
the binary classifiers no longer share H due to the difference among the
regularization parameters. The computational complexity of this scheme
becomes

c × # (Iteration) × # (free parameters) × l3. (4.12)
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In the third scheme, the kernel parameters and the regularization pa-
rameters are not shared. Therefore, we independently optimize the free
parameters of each binary classifier. The computational complexity of this
scheme is the same as that of the second one.

5 Performance Comparison

In order to demonstrate the effectiveness of FS-KFD, we compare its per-
formance with those of KFD, SVMs, and k-nearest neighbors (KNN) (Lowe,
1995) on an artificial XOR problem, benchmark data sets from UCI Machine
Learning Repository (Blake & Merz, 1998), and the radar target recognition
problem. All the algorithms were implemented in MATLAB 7.0. And all
the experiments were run on a personal computer with 2.4 GHz P4 proces-
sors, 2 GB memory, and Windows XP operation system. Unless otherwise
specified, the FS-KFD mentioned in the following uses the gaussian kernel.

For FS-KFD, a gradient-descent method is used to search for the optimal
values for free parameters, and thus one needs to choose good optimization
software. We recommend using an available optimization package to avoid
the numerical problems. Here we use the function fminunc in the optimiza-
tion toolbox of MATLAB that implements BFGS quasi-Newton algorithm to
solve medium-scale problems. The maximum number of iterations allowed
is set to be 50, the termination tolerance on the function value and variable
value is set to be 0.0001, and the cubic polynomial line search procedure
is used to find the optimal step size. To avoid adding positive constraints
in the optimization problem, we use parameterizations β = (log(θ ), log(λ)).
The initial values of the scaling factors and regularization parameters are
log(θ ) = log( 1

d ) × 1 and log(λ) = 0, respectively, where d is the feature di-
mensionality.

In general, choosing the optimal value for γ is difficult. Throughout the
article, γ is set to be 10. We have found that using the same setting for
various data sets works well. We can also try several different values for γ

and choose the one leading to the smallest leave-one-out error.

5.1 Artificial XOR Problem. This experiment aims at validating the
robustness of FS-KFD against the inclusion of the irrelevant features. To
this end, a variant of XOR is constructed, with each feature drawn from
a uniform distribution on the interval [−1, 1]. Regardless of the feature
dimensionality d , the output label for a given data point is related to only
the first two features of the data and is defined as

y =
{

+1 if x1x2 ≥ 0

−1 otherwise
x1, x2 ∈ U (−1,+1) . (5.1)
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Figure 2: (A) Variation of the errors of FS-KFD and KFD with the dimensionality.
(B) Scaling factors with the dimensionality d = 20.

This suggests that there exist d − 2 irrelevant features for the data with d
features. The optimal decision function of this problem is nonlinear, and
the highest recognition rate of linear classifiers is only 66.67%. FS-KFD and
KFD are constructed on the training set with 200 samples and tested on
the independent test set with 5000 samples. The results are averaged over
10 random realizations. To study the scaling property of the errors of FS-
KFD and KFD as the feature dimensionality, we sequentially increase the
feature dimensionality from 2 to 20 at an interval of 2. The plots of the
errors of the two algorithms as the function of the feature dimensionality
are shown in Figure 2A. The scaling factors with the dimensionality d = 20
are shown in Figure 2B.

From Figure 2A, we observe that FS-KFD is much more robust to the
increase of the irrelevant features compared with KFD. Furthermore, the
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Table 1: Information on Benchmark Data Sets.

Problem Training/Test Class Attribute

Breast 400/299 2 9
German 600/400 2 20
Liver 200/145 2 6
Diabetes 400/368 2 8
Vote 250/185 2 16
Glass 150/64 6 9
Yeast 100/108 5 79
Splice 500/1675 3 240
Segment 500/1810 7 18
Vehicle 500/346 4 18

feature selection ability of FS-KFD is clearly exhibited in Figure 2B. The
scaling factors corresponding to the relevant features are significantly larger
than those corresponding to the irrelevant features. The rapid performance
degradation of KFD suggests that the feature-scaling technique is indeed
necessary in the presence of many irrelevant features.

5.2 Benchmark Comparison. The purpose of this experiment is to com-
pare FS-KFD with KFD, SVM, and KNN on a collection of benchmark data
sets from the UCI Machine Learning Repository. These data sets have been
extensively used in testing the performance of diversified kinds of learning
algorithms. Information on these benchmark data sets is summarized in
Table 1.

The sizes of training set and test set are shown in the second column of
Table 1. For each training-test pair, the training samples are scaled into zero
mean and unit variance, and the test samples are adjusted using the same
linear transformation. The final errors are averaged over 10 random splits
of the full data sets, which are reported in Tables 2 and 3.

Note that all model selection procedures are independently performed
for each training-test pair so that the standard error of the mean includes
the variability due to the sensitivity of the model selection criterion to the
partitioning of the data. The detailed experimental setups are summarized
as follows:

1. For KFD, the leave-one-out error is used for model selection. We
perform a grid search on intervals log 2(θ ) = [−12,−10, . . . , 4] and
log 2(λ) = [−10,−9, . . . , 1]. Three possible multiclass schemes are
considered: KFD with shared kernel parameters and regularization
parameters, KFD with only shared kernel parameters, and KFD with-
out shared free parameters.
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Table 2: Mean and Variance of Test errors Obtained by FS-KFD, KFD, Span
Bound–Based SVM, and KNN.

Problem FS-KFD(1) KFD(1) SVM(Span) KNN

Breast 4.05 ± 0.71 4.11 ± 0.77 4.45 ± 0.76 3.85 ± 1.01
German 24.75 ± 1.88 23.35 ± 2.74 24.22 ± 2.19 27.35 ± 2.10
Diabetes 24.67 ± 1.75 23.45 ± 2.05 24.86 ± 1.59 26.68 ± 2.06
Liver 30.14 ± 5.34 29.72 ± 5.16 31.72 ± 5.26 39.66 ± 4.09
Vote 5.14 ± 1.40 5.62 ± 1.98 5.08 ± 1.86 7.08 ± 1.83
Glass 32.81 ± 9.63 33.28 ± 7.51 32.97 ± 6.93 31.87 ± 5.95
Splice 6.33 ± 1.27 6.90 ± 1.09 6.91 ± 0.61 10.32 ± 1.06
Yeast 5.83 ± 1.80 5.85 ± 2.02 6.67 ± 1.79 8.89 ± 2.23

Segment 4.59 ± 0.67 7.87 ± 0.80 6.57 ± 1.25 8.25 ± 1.03
Vehicle 17.72 ± 2.21 20.17 ± 2.00 17.05 ± 2.38 31.56 ± 1.83

Notes: FS-KFD(1) denotes FS-KFD with shared kernel parameters and reg-
ularization parameters. KFD(1) denotes KFD with shared kernel parameters
and regularization parameters.

2. For SVM, the span bound (Vapnik & Chapelle, 2000) is used to opti-
mize the kernel parameters and the regularization parameters. Initial
setups are the same as in FS-KFD.

3. For KNN, the leave-one-out error is used to find the best number
of neighbors k. We consider 50 different values from the interval
[1, . . . , l − 1] (uniformly in logarithm) (Rätsch, 2001), where l is the
size of the training set.

Two-tailed t-tests with the significant level 0.05 are performed to deter-
mine whether there is a significant difference between FS-KFD and other
algorithms. The conclusions are summarized as follows. FS-KFD is sig-
nificantly better than KFD on the Segment and Vehicle data sets. As for
the remaining data sets, FS-KFD and KFD achieve similar performance.

Table 3: Mean and Variance of Test errors Obtained by FS-KFD and KFD.

Problem FS-KFD(2) FS-KFD(3) KFD(2) KFD(3)

Glass 34.53 ± 11.13 31.87 ± 8.31 33.44 ± 9.44 31.71 ± 9.58
Splice 6.16 ± 1.19 5.87 ± 1.00 6.95 ± 0.93 6.71 ± 0.93
Yeast 6.29 ± 2.61 6.67 ± 2.38 6.48 ± 2.58 7.59 ± 3.02

Segment 4.36 ± 0.66 4.61 ± 0.75 8.04 ± 0.98 7.62 ± 1.00
Vehicle 17.89 ± 2.07 18.58 ± 2.09 20.64 ± 2.13 20.40 ± 1.93

Notes: FS-KFD(2) and FS-KFD(3) denote FS-KFD with only shared kernel
parameters and without shared free parameters, respectively. KFD(2) and
KFD(3) denote KFD with only shared kernel parameters and without
shared free parameters, respectively.
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FS-KFD and span bound–based SVM obtain similar performance on all
data sets except Segment. FS-KFD is much better than KNN on all data sets
except Breast and Glass.

Pairwise two-tailed t-tests with a significance level of 0.05 are performed
to determine whether there is a significant difference among the three mul-
ticlass schemes of FS-KFD and KFD. The resulting p-values indicate that
there is no significant difference among the three multiclass schemes.

In general, the feature-scaling technique improves the generalization
performance of KFD and leads to a natural feature selection when irrelevant
features occur. For example, on the Segment data set, the four largest scaling
factors are 13.98, 3.50, 2.72, and 2.26, and yet other scaling factors are smaller
than 0.5.

5.3 Radar Target Recognition. Radar target recognition refers to the
detection and recognition of target signatures using high-resolution range
profiles—in our case, in inverse synthetic aperture radar. A radar image
represents a spatial distribution of microwave reflectivity that is sufficient
to characterize the illuminated target. Range resolution allows the sorting
of reflected signals on the basis of range. When range-gating or time-delay
sorting is used to interrogate the entire range extent of the target space, a
one-dimensional image, called a range profile, will be generated. Figure 3
is an example of such signature of three different planes: J-6, J-7, and B-52.

Our task is to recognize the range profile of the three different plane
models—J-6, J-7, and B-52—based on experimental data acquired in a mi-
crowave anechoic chamber. The dimensionality of the range profiles is 64.
The full data set is split into 359 training samples and 719 test samples.
The training samples consist of 103 one-dimensional images of J-6, 149 one-
dimensional images of J-7, and 107 one-dimensional images of B-52. The test
samples consist of 206 one-dimensional images of J-6, 299 one-dimensional
images of J-7, and 214 one-dimensional images of B-52. Experimental re-
sults for several classifiers are summarized in Table 4. It can be observed
that FS-KFD is superior to other classifiers in terms of classification accuracy
on this data set.

6 Discussion

Our algorithm is not yet applicable to the problems where the number of
feature dimensionality is on the order of several hundred and that of train-
ing samples on the order of several thousand due to the high computational
cost. This limitation can be overcome by integrating a feature preselection
step into FS-KFD. An alternative way to break this limitation is to allow
some associated features to share the same scaling factors. For example, in
image recognition problems, it is reasonable that the neighboring features
share the same scaling factors. Exploiting effective feature preselection and
reasonable feature-sharing schemes is an interesting research direction.
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Figure 3: (A) One-dimensional image of J-6. (B) One-dimensional image of J-7.
(C) One-dimensional image of B-52.

It is well known that the kernel function plays an important role in KFD.
Choosing different kernel functions may result in different performance.
The determination of an appropriate kernel for a specific application is
far from fully understood. Consequently, combining FS-KFD and kernel
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Table 4: Number of Misclassifications of Several Classifiers on the Radar Target
Recognition Problem.

Classifier J-6/J-7/B-52

SVM (gaussian kernel) 11
LS-SVM (gaussian kernel) 11
RVM (gaussian kernel) (Tipping, 2001) 12
SPR (gaussian kernel) (Figueiredo, 2003) 12
KFD ( gaussian kernel) 13
FS-KFD (feature-scaling gaussian kernel) 7

construction trick to improve the performance of KFD in a specific applica-
tion is of potential importance.

One phenomenon worth mentioning is that the leave-one-out error re-
sulting from the gradient-descent algorithm is smaller than the test error.
The reason is that the leave-one-out error suffers from a large variance in
small sample cases. If some countermeasure, such as regularization on the
leave-one-out error is taken, this problem can be overcome. This is a topic
we will pursue in the future research.
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