
LETTER Communicated by Oliver Chapelle

Recursive Finite Newton Algorithm for Support Vector
Regression in the Primal

Liefeng Bo
blf0218@163.com
Ling Wang
wliiip@163.com
Licheng Jiao
lchjiao@mail.xidian.edu.cn
Institute of Intelligent Information Processing, Xidian University,
Xi’an 710071, China

Some algorithms in the primal have been recently proposed for training
support vector machines. This letter follows those studies and develops a
recursive finite Newton algorithm (IHLF-SVR-RFN) for training nonlin-
ear support vector regression. The insensitive Huber loss function and
the computation of the Newton step are discussed in detail. Comparisons
with LIBSVM 2.82 show that the proposed algorithm gives promising
results.

1 Introduction

Support vector machines (SVMs) (Burges, 1998; Vapnik, 1998; Smola &
Schölkopf, 2004) are powerful tools for classification and regression. In
the past few years, fast algorithms for SVMs have been an active research
direction. Traditionally, SVMs are trained by using decomposition tech-
niques such as SVMlight (Joachims, 1999) and sequential minimal optimiza-
tion (Platt, 1999; Shevade, Keerthi, Bhattacharyya, & Murthy, 2000; Keerthi,
Shevade, Bhattacharyya, & Murthy, 2001), which solve the dual problem
by optimizing a small subset of the variables each iteration. Recently,
some algorithms in the primal have been presented for training SVMs.
(Mangasarian, 2002; Fung & Mangasarian, 2003) proposed the finite
Newton algorithm and showed that it is rather powerful for linear SVMs.
Keerthi and DeCoste (2005) introduced some appropriate techniques to
speed up the finite Newton algorithm and named the resulting algorithm
the modified finite Newton algorithm. Chapelle (2006) proposed the recur-
sive finite Newton algorithm and showed it to be as efficient as the dual
domain method for nonlinear support vector classification.

This letter follows these studies and develops a recursive finite Newton
algorithm (IHLF-SVR-RFN) for nonlinear SVR. One of its main contribu-
tions is to introduce an insensitive Huber loss function that includes several

Neural Computation 19, 1082–1096 (2007) C© 2007 Massachusetts Institute of Technology

Recursive Finite Newton Algorithm for SVR 1083

popular loss functions as its special cases. Comparisons with LIBSVM 2.82
(Fan, Chen, & Lin, 2005) suggest that IHLF-SVR-RFN is as efficient as the
dual domain method for nonlinear SVR.

The letter is organized as follows. In section 2, SVR in the primal is
introduced. The insensitive Huber loss function and its corresponding op-
timization problem are proposed in section 3. The recursive finite Newton
algorithm is discussed in section 4. Comparisons with LIBSVM 2.82 are
reported in section 5. Section 6 presents the conclusions.

2 Support Vector Regression in the Primal

Consider a regression problem with training samples {xi , yi }n
i=1 where xi

is the input sample and yi is the corresponding target. To obtain a linear
predictor, SVR solves the following optimization problem:

min
w,b

(
‖w‖2

2
+ C

n∑
i=1

(
ξ

p
i + ξ̄

p
i

))

s.t. w · xi + b − yi ≤ ε + ξi

yi − w · xi + b ≤ ε + ξ̄i

ξi , ξ̄i ≥ 0, i = 1, 2, · · · , n. (2.1)

Eliminating the slack variables
{
ξi , ξ̄i

}n
i=1 and dividing equation 2.1 by the

factor C , we get the unconstrained optimization problem,

min
w,b

(
Lε (w, b) =

n∑
i=1

lε (w · xi + b − yi) + λ ‖w‖2

)
, (2.2)

where λ = 1
2C and lε (r) = max (|r | − ε, 0)p. The most popular selections for

p are 1 and 2. For convenience of expression, the loss function with p = 1
is referred to as insensitive linear loss function (ILLF) and that with p = 2
insensitive quadratic loss function (IQLF).

Nonlinear SVR can be obtained by using a kernel function and an as-
sociated reproducing kernel Hilbert space H. The resulting optimization
is

min
f

(
Lε (f) =

n∑
i=1

lε (f (xi) − yi) + λ ‖ f ‖2
H

)
, (2.3)

where we have dropped b for simplicity. Our experience shows that the
generalization performance of SVR is not affected by this drop. According
to the representer theory (Kimeldorf & Wahba, 1970), the optimal function

1084 L. Bo, L. Wang, and L. Jiao

for equation 2.3 can be expressed as a linear combination of the kernel
functions centered in the training samples,

f (x) =
n∑

i=1

βi k (x, xi). (2.4)

Substituting equation 2.4 into 2.3, we have

min
β

Lε (β) =

n∑
i=1

lε

 n∑

j=1

βi k
(
xi , x j

) − yi

 + λ

n∑
i=1

βiβ j k
(
xi , x j

) . (2.5)

Introducing the kernel matrix K with Ki j = k
(
xi , x j

)
and Ki the ith row of

K, equation 2.5 can be rewritten as

min
β

(
Lε (β) =

n∑
i=1

lε (Kiβ − yi) + λβT Kβ

)
. (2.6)

As long as lε (·) is differentiable, we can optimize equation 2.6 by a gradient
descent algorithm.

3 Finite Newton Algorithm for Insensitive Huber Loss Function

The finite Newton algorithm is a Newton algorithm that can be proved
to converge in a finite number of steps, and it has been demonstrated
to be very efficient for support vector classification (Mangasarian, 2002;
Keerthi & DeCoste, 2005; Chapelle, 2006). Here, we focus on the regression
case. The finite Newton algorithm is straightforward for the insensitive
quadratic loss function by defining the generalized Hessian matrix (Clarke,
1983; Hiriart-Urruty, Strodiot, & Nguyen, 1984; Keerthi & DeCoste, 2005);
however, it is not applicable to the insensitive linear loss function since it
is not differentiable. Inspired by the Huber loss function (Huber, 1981), we
propose an insensitive Huber loss function (IHLF),

lε,� (z) =

0 if |z| ≤ ε

(|z| − ε)2 if ε < |z| < �,

(� − ε) (2 |z| − � − ε) if |z| ≥ �

(3.1)

whose shape is shown in Figure 1.

Recursive Finite Newton Algorithm for SVR 1085

Figure 1: Insensitive Huber loss function with ε = 0.5 and � = 1.5 and insen-
sitive quadratic loss function with ε = 0.5.

We emphasize that � is strictly greater than ε, ensuring that IHLF is
differentiable. Its first-order derivative can be written as

∂lε,� (z)
∂z

=

0 if |z| ≤ ε

2sign (z) (|z| − ε) if ε < |z| < �,

2sign (z) (� − ε) if |z| ≥ �

(3.2)

where sign (z) is 1 if z ≥ 0; otherwise, sign (z) is −1.
The properties of IHLF are controlled by two parameters: ε and �.

At certain ε and � values, we can obtain some familiar loss functions:
(1) for ε = 0 and an appropriate �, IHLF becomes the Huber loss func-
tion (HLF); (2) for ε = 0 and � = ∞, IHLF becomes the quadratic (gaus-
sian) loss function (QLF); (3) for ε = 0 and � → ε, IHLF approaches the
linear (Laplace) loss function (LLF); (4) for 0 < ε < ∞ and � = ∞, IHLF be-
comes the insensitive quadratic loss function (IQLF); and (5) for 0 < ε < ∞
and � → ε, IHLF approaches the insensitive linear loss function (ILLF).
The profiles of the loss functions derived from equation 3.1 are shown in
Figure 2.

Introducing IHLF into the optimization problem, equation 2.6, we have
the following nonlinear SVR problem:

min
β

(
Lε,� (β) =

n∑
i=1

lε,� (Kiβ − yi) + λβT Kβ

)
. (3.3)

1086 L. Bo, L. Wang, and L. Jiao

Figure 2: Loss functions derived from equation 3.1.

Let the residual vector be

{
r (β) = Kβ − y
ri (β) = Kiβ − yi

. (3.4)

Defining the sign vector s (β) = [s1 (β) , · · · , sn (β)]T by

si (β) =

1 if ε < ri (β) < �

−1 if − � < ri (β) < −ε

0 otherwise
, (3.5)

the sign vector s̄ (β) = [s̄1 (β) , · · · , s̄n (β)]T by

s̄i (β) =

1 if ri (β) ≥ �

−1 if ri (β) ≤ −�

0 otherwise
, (3.6)

Recursive Finite Newton Algorithm for SVR 1087

and the active matrix

W (β) = diag
{
w1 (β) , · · · , wn (β)

}
(3.7)

by wi (β) = s2
i (β), we can rewrite equation 3.3 as

min
β

(
Lε,� (β) =

n∑
i=1

wi (β)(|ri (β)| − ε)2

+
n∑

i=1

s̄2
i (β) (� − ε)

(
2

∣∣ri (β)
∣∣ − � − ε

) + λβT Kβ

)
. (3.8)

Rearranging equation 3.8, we can obtain a more compact expression:

min
β

(
Lε,� (β) = r (β)T W (β) r (β) − 2εr (β)T s (β) + 2 (� − ε) r (β)T s̄ (β)

+λβT Kβ + εT W (β) ε − (
�2 − ε2

)
s̄ (β)T s̄ (β)

)
.

(3.9)

Let us consider some basic properties of Lε,� (β). First, Lε,� (β) is a piece-
wise quadratic function. Second, Lε,� (β) is a convex function, so it has a
unique minimizer. Finally, Lε,� (β) is continuously differentiable with re-
spect to β. Although Lε,� (β) is not twice differentiable, one still can use the
finite Newton algorithm by defining the generalized Hessian matrix. The
flowchart of the finite Newton algorithm is as follows:

Algorithm 3.1: IHLF-SVR-FN

1. Choose a suitable starting point β0 and set k = 0;

2. Check whether βk is the optimal solution of equation 3.9. If so, stop;

3. Compute the Newton step h;

4. Choose the step size t by the exact line search. Set βk+1 = βk + th and
k = k + 1.

4 Practical Implementation

4.1 Computing the Newton Step. For any given value of β, we say that
a point xi is support vector if

∣∣ri (β)
∣∣ > ε. Let sν1 = {

i |si
(
βk) �= 0

}
denote

the index set of the support vectors lying in the quadratic part of the loss
function, sν2 = {

i |s̄i
(
βk) �= 0

}
the index set of the support vectors lying in

the linear part of the loss function, and nsν the index set of the nonsupport
vectors. Chapelle (2006) has shown that in support vector classification, the
Newton step can be computed at a cost of O

(
n3

sν1

)
rather than O

(
n3

)
, where

1088 L. Bo, L. Wang, and L. Jiao

nsν1 denotes the number of the support vectors lying in the quadratic part
of the loss function. In the following, we will show that a similar conclusion
holds for SVR.

The gradient of Lε,� (β) with respect to β is

∇Lε,� (β) = 2KT W (β) r (β) − 2εKT s (β)

+ 2 (� − ε) KT s̄ (β) + 2λKβ. (4.1)

Define the set A by

A = {
β ∈ Rn |∃i,

∣∣ri (β)
∣∣ = ε or

∣∣ri (β)
∣∣ = �

}
. (4.2)

The Hessian exists for β /∈ A. For β ∈ A, it is (arbitrarily) defined to one of
its limits. Thus, we have the generalized Hessian,

∇2 Lε,� (β) = 2KT W (β) K + 2λK. (4.3)

The Newton step at the kth iteration is given by

h = − (∇2 Lε,�

(
βk))−1 ∇Lε,�

(
βk)

= (
W

(
βk) K + λI

)−1 (
W

(
βk) y + εs

(
βk) − (� − ε) s̄

(
βk)) − βk, (4.4)

where I is the identity matrix. For convenience of expression, we reorder
the training samples such that the first nsν1 training samples are the support
vectors lying in the quadratic part of the loss function and the training
samples from nsν1 + 1 to nsν1 + nsν2 are the support vectors lying in the
linear part of the loss function. Thus, equation 4.4 can be rewritten as

 hsν1

hsν2

hnsν

 =

 Ksν1,sν1 + λIsν1,sν1 Ksν1,sν2 Ksν1,nsν

0 λIsν2,sν2 0
0 0 λInsν,nsν

−1

×

 ysν1 + ε

[
s
(
βk)]

sν1

− (� − ε)
[
s̄
(
βk)]

sν2

0

 −

 βk

sν1

βk
sν2

βk
nsν

 . (4.5)

Recursive Finite Newton Algorithm for SVR 1089

Together with the matrix inversion result from Zhang (2004), we can sim-
plify equation 4.5 as

 hsν1

hsν2

hnsν

 =

(Ksν1,sν1 + λIsν1,sν1)−1

(
ysν1 + ε

[
s
(
βk)]

sν1

+
(� − ε) Ksν1,sν2

[
s̄
(
βk)]

sν2

λ

)
− βk

sν1

− (� − ε)
[
s̄
(
βk)]

sν2

λ
− βk

sν2

−βk
nsν

. (4.6)

Equation 4.6 indicates that we can compute the Newton step at a cost of
O

(
n3

sν1

)
. Instead of inverting the matrix (Ksν1,sν1 + λIsν1,sν1), we can compute

the first part of the Newton step by solving the positive definite system:

(Ksν1,sν1 + λIsν1,sν1) hsν1 = ysν1 + ε
[
s
(
βk)]

sν1
+

(� − ε) Ksν1,sν2

[
s̄
(
βk)]

sν2

λ
.

(4.7)

Many methods, such as gaussian elimination, conjugate gradient, and fac-
torization, can be used to find the solution to equation 4.7. In the current
implementation, we solve equation 4.7 using Matlab command “\” that
employs Cholesky factorization.

4.2 Exact Line Search. The minimizer of a piecewise-smooth, convex
quadratic function can be found by identifying the points at which the
second derivative jumps, sorting these points, and successively searching
over those points until a point where the slope changes sign is located.
(For more details, refer to Madsen & Nielsen, 1990, and Keerthi & DeCoste,
2005.) The complexity of this line search is O(m log(m)). Since the Newton
step is much more expensive, the line search does not add to the complexity
of the algorithm.

4.3 Initialization. The initialization of IHLF-SVR-FN is an important
problem. If we use a randomly generated β as a starting point, we would
have to invert an n × n matrix at the first Newton step. But if we can identify
the support vectors ahead of time, we need to invert only an nsν1 × nsν1

matrix at the first Newton step.
According to Chapelle’s suggestion (Chapelle, 2006), we can identify the

support vectors by a recursive procedure. We start from a small number of

1090 L. Bo, L. Wang, and L. Jiao

training samples, train, double the number of training samples, retrain, and
so on. In this way, the support vectors are rather well identified, avoiding the
inversion of the n × n matrix. To distinguish this algorithm from the original
finite Newton algorithm, we call it a recursive finite Newton algorithm
(IHLF-SVR-RFN).

4.4 Checking Convergence. Once the support vectors remain un-
changed, IHLF-SVR-FN has found the optimal solution. We use this prop-
erty to check the convergence of IHLF-SVR-FN.

4.5 Finite Convergence and Computational Complexity

Theorem 1: IHLF-SVR-FN terminates at the global minimum solution of equa-
tion 3.9 after a finite number of iterations.

The proof of theorem 1 is very much along the lines of the proof of
theorem 1 in Keerthi and DeCoste (2005), which is easily extended to a
piecewise quadratic loss function, although it considers only a squared
hinge loss function.

In IHLF-SVR-RFN, the most time-consuming step is computing the New-
ton step, whose complexity is O(n(nsν1 + nsν2) + n3

sν1
), where nsν2 denotes the

number of the support vectors lying in the linear part of the loss function.
The first term is the cost of finding the support vectors and the second term
the cost of solving the linear system, equation 4.7. The number of iterations,
that is, the loops of steps 2 to 4, is usually small, say, 5 to 30.

5 Experiments

In order to verify the effectiveness of IHLF-SVR-RFN and IQLF-SVR-RFN
(the insensitive quadratic loss function is used), we compare them with
LIBSVM 2.82 on some benchmark data sets. LIBSVM 2.82 is the fastest
version of LIBSVM, where the second-order information is used to se-
lect the working set. Gaussian kernel k(xi , x j) = exp(−γ ‖xi − x j‖2

2) is used
to construct nonlinear SVR. All the experiments are run on a personal
computer with 2.4 GHz processors, 1 GB memory, and Windows XP op-
eration systems. (Matlab code for IHLF-SVR-RFN is available online at
http://see.xidian.edu.cn/graduate/lfbo/.)

We use the data sets Abalone, Computer Activity, and House16H
(Rasmussen et al., 1996) for our comparisons. The Abalone data set consists
of 4177 samples with 8 attributes. The task is to predict the age of abalone
from all eight physical measurements. The Computer Activity data set was
collected from a Sun Sparcstation 20/712 with 128 Mb of memory run-
ning in a multiuser university department. It consists of 8192 samples with
21 attributes. The task is to predict the portion of time that CPUs run in
user mode from all 21 attributes. The House16H data set consists of 22,784

Recursive Finite Newton Algorithm for SVR 1091

Table 1: Training Time on the Abalone, Computer Activity, and House16H Data
Sets.

IHLF-SVR-RFN IQLF-SVR-RFN LIBSVM 2.82 ε �

Abalone 2.48 4.30 5.99 0.100 0.110
Computer 11.97 18.43 22.48 0.050 0.055
House16H 1640.81 / 653.05 0.050 0.060

samples with 16 attributes. The task is to predict the median price of the
houses in a small survey region.

5.1 Comparison with LIBSVM 2.82. The Abalone data set is randomly
split into 3000 training samples and 1177 test samples, the Computer Ac-
tivity data set into 5000 training samples and 4192 test samples, and the
House16H data set into 20,000 training samples and 2784 test samples. For
each training-test pair, the training samples are scaled into the interval [−1,
1], and the test samples are adjusted using the same linear transformation.

For the Abalone and Computer Activity data sets, we precompute the
entire kernel matrix for all three algorithms. Since the value of the parameter
pair (γ, C) that optimizes the generalization performance is usually not
known prior, the value that is ultimately used to design SVR is usually
determined by trying many different values of (γ, C). Thus, it is important
to understand how different values, optimal and otherwise, affect training
time.

Four experiments are performed on the Abalone and Computer Activity
data sets. In the first experiment, we fix the values of ε and � shown
in Table 1 and search the optimal parameter pair (γ ∗, C∗) from the set{
2−4/d, 2−3/d, · · · , 23/d, 24/d

} × {
2−3, 2−2, · · · , 27, 28

}
, which gives the best

generalization performance on the test samples, where d is the number
of the attributes of samples. Therefore, for each problem, we try 9 × 12 =
108 combinations. The mean training time of the three algorithms on all
parameter pairs is reported in Table 1. In the second experiment, we fix
the value of the kernel parameter and investigate the robustness of the
three algorithms against the variation of the regularization parameter C . In
the third experiment, we fix the value of the regularization parameter and
investigate the robustness of the three algorithms against the variation of the
kernel parameter γ . In the fourth experiment, we investigate the influence
of training samples size on the training time of the three algorithms. The
values of the kernel parameter and the regularization parameter are set to
(γ ∗, C∗).

From Table 1, we can see that IHLF-SVR-RFN outperforms IQLF-SVR-
RFN and LIBSVM 2.82 in terms of the training time. From Figure 3, we
observe that the training time of LIBSVM 2.82 has a sharp increase for large

1092 L. Bo, L. Wang, and L. Jiao

Figure 3: Variation of the training time with the regularization parameter on
the Abalone (left) and Computer Activity (right) data sets. γ is fixed to 22/d .

Figure 4: Variation of the training time with the kernel parameter on the
Abalone (left) and Computer Activity (right) data sets. For the Abalone data
set, C is fixed to 23, and for the Computer Activity data set, C is fixed to 24.

C value, and hence IHLF-SVR-RFN and IQLF-SVR-RFN are much more
robust against variation of C than LIBSVM 2.82. From Figure 4, we observe
that the training time of IHLF-SVR-RFN and LIBSVM 2.82 increases with an
increasing kernel parameter. From Figure 5, we observe that in terms of the
training time IHLF-SVR-RFN and IQLF-SVR-RFN are superior to LIBSVM
2.82 on the Abalone data set and inferior to LIBSVM 2.82 on the Computer
Activity data set using the optimal parameter pair.

For the House16H data sets, it is impossible to store the entire kernel
matrix because of insufficient memory, so we need to compute the kernel
matrix in each Newton step. Since it is computationally prohibitive to search
the set of grid values using all the training samples, we use a random subset
of the training samples of size 5000 to choose (γ ∗, C∗). The training time of
IHLF-SVR-RFN and LIBSVM 2.82 on (γ ∗, C∗) is given in Table 1. Note that

Recursive Finite Newton Algorithm for SVR 1093

Figure 5: Variation of the training time with the training set size on the Abalone
(left) and Computer Activity (right) data sets. For the Abalone data set, (γ, C)
is fixed to

(
22/d, 23

)
, and for the Computer Activity data set, (γ, C) is fixed to(

22/d, 24
)
.

IQLF-SVR-RFN cannot run on this data set because of insufficient memory.
From Table 1, we can see that LIBSVM 2.82 is faster than IHLF-SVR-RFN on
this data set. The main reason is that IHLF-SVR-RFN needs to reevaluate the
n × (nsν1 + nsν2) kernel matrix in each Newton step. However, we believe
that IHLF-SVR-RFN has the advantage for large-scale optimization because
the computation of the kernel matrix can be easily parallelized, which could
improve the training time significantly.

5.2 Influence of �. The purpose of the experiments in this section is
to study the influence of � on test error and training time. The partition
of the training samples and test samples is the same as in section 5.1. The
values of the kernel parameter and the regularization parameter are set to
(γ ∗, C∗), and the value of ε is the same as in Table 1. The final errors are
averaged over 10 random splits of the full data sets. Figures 6 and 7 show
the variation of the test error and the training time with � on the Abalone
and Computer Activity data sets, respectively.

From Figure 6, we observe that the performance of IHLF-SVR-RFN is
close to that of LIBSVM 2.82 (the insensitive linear loss function is used)
when � approaches ε; the performance of IHLF-SVR-RFN is close to that
of IQLF-SVR-RFN when � is significantly greater than ε. This is consistent
with the discussion in section 3. From Figure 7, we observe that the training
time of IHLF-SVR-RFN fluctuates with the variation of � value. The main
reason is that the training time is affected by the number of support vectors
and the Newton step. The former often increases with an increasing �,
and hence some training time is added for large � value; however, the
latter often decreases with an increasing �, and hence some training time
is subtracted for large � value.

1094 L. Bo, L. Wang, and L. Jiao

Figure 6: Influence of � on the test error on the Abalone (left) and Computer
Activity (right) data sets.

Figure 7: Influence of � on the training time on the Abalone (left) and Computer
Activity (right) data sets.

6 Conclusion and Discussions

In this letter, we present a recursive finite Newton algorithm for training
nonlinear SVR. First, we propose the insensitive Huber loss function and
show that several popular loss functions are special cases. Then we discuss
in detail the implementation of IHLF-SVR-RFN. Finally, we verify the ef-
fectiveness of the proposed algorithm on three benchmark regression data
sets.

The computational complexity of IHLF-SVR-RFN can be decreased by
some approximation strategies. For example, if the kernel matrix is sparse,
the Newton step can be solved more efficiently. We can also approximate the
objective function 3.9 by a matching pursuit approach. Keerthi, Chapelle,
and DeCoste (2006) implemented that in the classification case, and it is
straightforward to generalize it to the regression case.

Recursive Finite Newton Algorithm for SVR 1095

Acknowledgments

We thank the two reviewers for their helpful comments, which greatly im-
proved this letter, and Rainer Stollhoff and Bruce Rogers for their help in
proofreading the manuscript. This work was supported by the National
Natural Science Foundation of China under grant 60372050 and the Na-
tional Defense Preresearch Foundation of China under Grant A1420060172.

References

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2), 121–167.

Chapelle, O. (2006). Training a support vector machine in the primal. (MPI-Tech. Rep.
no. 147). Tübingen: Max Planck Institute for Biological Cybernetics.

Clarke, F. H. (1983). Optimization and nonsmooth analysis. New York: Wiley.
Fan, R. E., Chen P. H., & Lin C. J. (2005). Working set selection using second order

information for training support vector machines. Journal of Machine Learning
Research, 6, 1889–1918.

Fung, G., & Mangasarian, O. L. (2003). Finite Newton method for Lagrangian support
vector machine classification. Neurocomputing, 55(1–2), 39–55.

Hiriart-Urruty, J. B., Strodiot, J. J., & Nguyen V. H. (1984). Generalized Hessian matrix
and second-order optimality conditions for problems with CL1 data. Applied
Mathematics and Optimization, 11, 43–56.

Huber, P. (1981). Robust statistics. New York: Wiley.
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C.

Burges, & A. J. Smola (Eds.), Advances in kernel methods—Support vector learning.
Cambridge, MA: MIT Press.

Keerthi, S. S., Chapelle, O., & DeCoste D. (2006). Building support vector machines
with reduced classifier complexity. Journal of Machine Learning Research, 7, 1493–
1515.

Keerthi, S. S., & DeCoste D. M. (2005). A modified finite Newton method for fast
solution of large scale linear SVMS. Journal of Machine Learning Research, 6, 341–
361.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improve-
ments to Platt’s SMO algorithm for SVM classifier design. Neural Computation,
13(3), 637–649.

Kimeldorf, G. S., & Wahba G. (1970). A correspondence between Bayesian estimation
on stochastic processes and smoothing by splines. Annals of Mathematical Statistics,
41, 495–502.

Madsen, K., & Nielsen H. B. (1990). Finite algorithms for robust linear-regression.
BIT, 30(4), 682–699.

Mangasarian, O. L. (2002). A finite Newton method for classification. Optimization
Methods and Software, 17(5), 913–929.

Platt, J. (1999). Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.),
Advances in kernel methods—Support vector learning. Cambridge, MA: MIT Press.

1096 L. Bo, L. Wang, and L. Jiao

Rasmussen, C., Neal, R., Hinton G., van Camp D., Ghahramani Z., Kustra, R., &
Tibshirani R. (1996). The DELVE manual. Available online at http://www.cs.
toronto.edu/∼delve.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improve-
ments to the SMO algorithm for SVM regression. IEEE Transactions on Neural
Networks, 11(5), 1188–1193.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on SVR. Statistics and Computing, 14(3),
199–222.

Vapnik, V. (1998). Statistical learning theory, New York: Wiley.
Zhang, X. D. (2004). Matrix analysis and application. New York: Springer.

Received January 22, 2006; accepted July 19, 2006.

