Hierarchical Matching Pursuit for Image
Classification: Architecture and Fast Algorithms

Liefeng Bo
University of Washington
Seattle WA 98195, USA

Xiaofeng Ren Dieter Fox
ISTC-Pervasive Computing Intel Labs University of Washington
Seattle WA 98195, USA Seattle WA 98195, USA
Abstract

Extracting good representations from images is essential for many computer vi-
sion tasks. In this paper, we propose hierarchical matching pursuit (HMP), which
builds a feature hierarchy layer-by-layer using an efficient matching pursuit en-
coder. It includes three modules: batch (tree) orthogonal matching pursuit, spatial
pyramid max pooling, and contrast normalization. We investigate the architecture
of HMP, and show that all three components are critical for good performance.
To speed up the orthogonal matching pursuit, we propose a batch tree orthogonal
matching pursuit that is particularly suitable to encode a large number of obser-
vations that share the same large dictionary. HMP is scalable and can efficiently
handle full-size images. In addition, HMP enables linear support vector machines
(SVM) to match the performance of nonlinear SVM while being scalable to large
datasets. We compare HMP with many state-of-the-art algorithms including con-
volutional deep belief networks, SIFT based single layer sparse coding, and kernel
based feature learning. HMP consistently yields superior accuracy on three types
of image classification problems: object recognition (Caltech-101), scene recog-
nition (MIT-Scene), and static event recognition (UITUC-Sports).

1 Introduction

Visual recognition is a major focus of research in computer vision, machine learning, and robotics.
Many real world vision systems fundamentally rely on the ability to recognize object instances,
categories, scenes, and activities. In the past few years, more and more people have realized that
the core of building recognition systems is to learn meaningful representations (features) from high-
dimensional observations such as images and videos. A growing amount of research on visual
recognition has focused on learning rich features using modern machine learning methods.

Deep belief nets [9] built a hierarchy of features by greedily training each layer separately using
the restricted Boltzmann machine. The learned weights are then used to initialize multi-layer feed-
forward networks that further adjust the weights to the task at hand using supervision. To handle
full-size images, Lee et al. [16] proposed convolutional deep belief networks (CDBN) that use a
small receptive field and share the weights between the hidden and visible layers among all lo-
cations in an image. Invariant predictive sparse decomposition [11, 13] used feed-forward neural
networks to approximate sparse codes generated by sparse coding and avoided solving computa-
tionally expensive optimizations at runtime. Deconvolutional networks [26] reconstructed images
using a group of latent feature maps in a convolutional way under a sparsity constraint. A fast opti-
mization algorithm was introduced to solve the resulting sparse coding problem. These approaches

have been shown to yield competitive performance with the SIFT based bag-of-visual-words model
on object recognition benchmarks such as Caltech-101.

Recent research has shown that single layer sparse coding on top of SIFT features works surprisingly
well [15, 24, 23, 5, 6]. Yang et al. [24] proposed a single layer feature learning model ScSPM that
uses SIFT features as the input to sparse coding instead of raw image patches. Their experiments
have shown that this approach outperforms the classical bag-of-visual-words model and convolu-
tional deep belief networks, and achieves the state-of-the-art performance on many image classi-
fication benchmarks. Wang et al. [23] presented a fast implementation of local coordinate coding
that obtains sparse representations of SIFT features by performing local linear embedding on several
nearest visual words in the codebook. Boureau et al. [5] compared many feature learning algorithms,
and found that the SIFT based sparse coding in conjunction with max pooling performs remarkably
well, and the macrofeatures can boost recognition performance further. Coates and Ng [6] evaluated
many single layer feature learning systems by decomposing feature learning algorithms into training
and encoding phases, and suggested that the choice of architecture and encoder is the key to a suc-
cessful feature learning system. Very recently, Yu et al. [25] showed that hierarchical sparse coding
(HSC) at pixel level achieves similar performance with SIFT based sparse coding.

However, single layer sparse coding heavily depends on hand-crafted SIFT features. It is desir-
able to develop efficient and effective algorithms to learn features from scratch. Motivated by the
recent work on deep networks, in this work we propose hierarchical matching pursuit (HMP) that
uses the matching pursuit encoder to build a feature hierarchy layer by layer. The matching pursuit
encoder consists of three modules: batch tree orthogonal matching pursuit coding, spatial pyramid
max pooling, and contrast normalization. We discuss the architecture of HMP, and show that spatial
pyramid max pooling, contrast normalization, and hierarchical structure are key components to learn
good representations for recognition. We further present batch tree orthogonal matching pursuit that
is able to speed up the search of sparse codes significantly when a large number of observations
share the same dictionary. Our CPU implementation of HMP can extract the features from a typical
300 x 300 image in less than one second. Our experiments on object recognition, scene recogni-
tion, and static event recognition confirm that HMP yields better accuracy than hierarchical feature
learning, SIFT based single layer sparse coding, and many other state-of-the-art image classification
algorithms on standard datasets. Our work shows that learning features from raw pixels signifi-
cantly outperforms sparse coding approaches built on top of hand-crafted SIFT for full-size image
classification tasks.

2 Hierarchical Matching Pursuit

In this section, we introduce hierarchical matching pursuit. We first show how K-SVD is used to
learn the dictionary. We then propose the matching pursuit encoder, and investigate its architecture
and fast algorithms to compute sparse codes. Finally, we discuss how to build hierarchical matching
pursuit based on the matching pursuit encoder.

2.1 Dictionary Learning with K-SVD

K-SVD is a simple and efficient dictionary learning algorithm developed by Aharon et al. [1, 21].
K-SVD generalizes the idea of K-Means and updates the dictionary sequentially. Given a set of

h-dimensional observations Y = [y;,--- ,y,] € R"*™ (image patches in our case), K-SVD learns
a dictionary D = [dy,--- ,d,,] € R"™, where d; is called a filter (or atom), and an associated
sparse code matrix X = [x1,- - ,2,] € R™*™ by minimizing the following reconstruction error
in||Y — DX||? Vi, lzillo < K 1
min | Iz st Vi, [lzillo < (1)

where the notation || A|| 7 denotes the Frobenius norm, z; are the columns of X, the zero-norm || - ||o
counts the non-zero entries in the sparse code x;, and K is the sparsity level, which bounds the
number of the non-zero entries.

This optimization problem can be solved in an alternating manner. In the first stage, D is fixed, and
only the sparse code matrix is optimized. This problem can be decoupled to n simpler sub-problems

Algorithm 1: Batch Orthogonal Matching Pursuit (BOMP)
1. Input: Dictionary D, observation y, and the desired sparsity level K
2. Output: Sparse code = such that y ~ Dx
3. Initialization: I =0, a® =D"y,G=D"D,and 2z =0
4. Fork=1:K
5. Selecting the new filter: k = argmax;, |a|
6. I=IUk
7. Updating the sparse code: x; = G} a9
8. Updating o:: o = o® — Gy
9. End

This optimization problem is combinational and highly non-convex, but its approximate solution
can be found by the orthogonal matching pursuit discussed in the next section. In the second stage,
the dictionary D and its associated sparse coefficients are updated simultaneously by the Singular
Value Decomposition (SVD). For a given filter k, the quadratic term in (1) can be rewritten as

Y = DX = IV = 3~ dja] = dya] 3 = | B = dua [<3)
i#k

where x| are the rows of X, and E, is the residual matrix for the k-th filter. The optimal dj, and x,?

can be obtained by performing SVD of the matrix . To avoid the introduction of new non-zero
entries in the sparse code matrix X, the update process only uses the observations whose sparse
codes have used the k-th filter (the k-th entry of the associated sparse code is non-zero). When the
sparsity level K is set to be 1 and the sparse code matrix is forced to be a binary(0/1) matrix, K-SVD
exactly reproduces the K-Means algorithm.

2.2 Matching Pursuit Encoder

Our matching pursuit encoder consists of three modules: batch tree orthogonal matching pursuit,
spatial pyramid max pooling, and contrast normalization.

Batch Tree Orthogonal Matching Pursuit. The orthogonal matching pursuit (OMP) [19] com-
putes an approximate solution for the optimization problem Eq.(2) in a greedy style. At each step,
it selects the filter with the highest correlation to the current residual. At the first step, the residual
is exactly the observation. Once the new filter is selected, the observation is orthogonally projected
to the span of all the previously selected filters and the residual is recomputed. This procedure is
repeated until the desired K filters are selected. The quantities in the sparse code update need not
be computed from scratch. The vector D] y can be incrementally updated by simply appending a
new entry Dg y, where D denotes the sub-matrix of D containing the columns indexed by I. The

inversion of the matrix (D] D;)~! can be obtained using a progressive Cholesky factorization that
updates the matrix inversion incrementally.

In our application, sparse codes for a large number of image patches are computed by the same dic-
tionary. The total cost of orthogonal matching pursuit can be reduced by batch orthogonal matching
pursuit (BOMP) (Algorithm 1) that pre-computes some quantities [7, 22]. The key finding is that
filter selection, the most expensive step, doesn’t require x and r explicitly. Let & = DT r, we have

a=D"r=D"(y— D;(D]D;r)'Djy) =a" — G;G}}a? (4)

where we have set o = DTy and G = D' D, and Gy is the sub-matrix of G containing the
rows indexed by I and the columns indexed by I. Equation (4) indicates that if o® and G are pre-
computed, the cost of updating «v is O(mK), instead of O(mh). In orthogonal matching pursuit, we
have K < h since the h filters allow us to exactly reconstruct the observations. Note that the cost
of searching sparse codes quickly dominates that of the pre-computation as observations increase.
When using an overcomplete dictionary, K is usually much less than h. In our experiments, K is
10 and h is several hundreds in the second layer of HMP, and we have observed significant speedup
(Section 3) over orthogonal matching pursuit.

Algorithm 2: Batch Tree Orthogonal Matching Pursuit (BTOMP)
1. Input: Dictionary D, Centers C, observation y, and the desired sparsity level K

2. Output: Sparse code x such that y ~ Dx

3. Initialization: I =0, r =y,a=a’=C"Ty,B=C"D,andz =0
4. Fork=1:K

5. Choosing the sub-dictionary g;: j = argmax;, |a|

Selecting the new filter: k = argmax;,c, |d; 7|

I=1Uk

Updating the sparse code: z; = (D] D;)~'D]y

A S

Updating a: o = o® — By
10. Computing the residual: r =y — Dyx;
11. End

Pre-computing G takes O(m?h) time and O(m?) memory, which becomes infeasible for a very large
dictionary. To overcome this problem, we propose batch tree orthogonal matching pursuit (BTOMP)
(Algorithm 2) that organizes the dictionary using a tree structure. BTOMP uses K-Means to group
the dictionary into the o sub-dictionaries {D,,, - -- , Dy}, and associates the sub-dictionaries with
the learned centers C' = [c1, - - - , ¢,|. The filter is selected in two steps: (1) select the center that best
matches the current residual and (2) choose the filter within the sub-dictionary associated with this
center. BTOMP reduces the cost of the filter selection to O(oK + ™) and the memory to O(om).
BTOMP uses a tree based approximate algorithm to select the filter, and we have found that it works
well in practice. If o = m, BTOMP exactly recovers the batch orthogonal matching pursuit.

Spatial Pyramid Max Pooling. Spatial pyramid max pooling is a highly nonlinear operator that
generates higher level representations from sparse codes of local patches which are spatially close.
It aggregates these sparse codes using max pooling in a multi-level patch decomposition. At level
0, the decomposition consists of just a single spatial cell (whole patch). At level 1, the patch is
subdivided into four quadrants, yielding four feature vectors, and so on. Let U be the number of
pyramid levels, V,, the number of spatial cells in the u-th pyramid level, and P be an image cell,
then max pooling at the spatial cell P can be represented as

F(P) = |max|zjl, - max|z;m|)

Concatenating max pooling features from different spatial cells, we have the patch-level feature:
F(P)=[F(P}),--- ,F(P"), - F(Py")].

Contrast Normalization. The magnitude of sparse codes varies over a wide range due to local vari-
ations in illumination and foreground-background contrast, so effective local contrast normalization
turns out to be essential for good recognition performance. We have compared two normalization
schemes: L1 normalization and Lo normalization and found that the latter is consistently better than
the former. For an image patch P, the L, normalization has the form

_ F(P)

O = rer T

where € is a small positive number. We have experimented with different ¢ values. We found that
the best e value in the first layer is around 0.1. Image intensity is always normalized to [0, 1] in our
experiments. This is intuitive because a small threshold is able to make low contrast patches more
separate from high contrast image patches, increasing the discrimination of features. In the deeper
layers,ﬁrecognition performance is robust to the € value as long as it is small enough (for example
< 107°).

(6)

2.3 Hierarchical Matching Pursuit

The matching pursuit encoder in the second layer is built on top of the outputs of the matching
pursuit encoder in the first layer. Training is accomplished in a greedy, layer-wise way: once a lower

First Layer Second Layer

[Matching Pursuit] [Matching Pursuit]

{ Pyramid Max Pooling] [Pyramid Max Pooling]

[Contrast Normalization] [Contrast Normalization]

Figure 1: Hierarchical Matching Pursuit. In the first layer, sparse codes from small image patches are
aggregated into patch-level features. In the second layer, sparse codes from patch-level features are
aggregated across the whole image to produce image-level features. Batch tree orthogonal matching
pursuit is used to compute sparse codes in each layer.

layer is trained, its dictionary is fixed, and its outputs are used as inputs to the next layer. We enforce
that the patch size in the second layer is larger than that in the first layer, which makes sure that a
higher level representation is extracted in the higher layer. More layers can be appended in a similar
way to produce deep representations.

3 Experiments

We compare hierarchical matching pursuit with many state-of-the-art image classification algorithms
on three publicly available datasets: Caltech101, MIT-Scene, and UIUC-Sports. Image intensity is
normalized to [0, 1]. All images are transformed into grayscale and resized to be no larger than
300 x 300 pixels with preserved ratio.

We use two-layer hierarchical matching pursuit in all experiments. We have experimented with one-
layer and three-layer HMP, but found that one-layer HMP is much worse than two-layer HMP while
three-layer HMP doesn’t improve recognition performance substantially. We learn the dictionary in
the two layers by performing K-SVD on 1,000,000 sampled patches. In the first layer, we remove
the zero frequency component from image patches by subtracting their means, and initialize K-SVD
with the overcomplete discrete cosine transform (DCT) dictionary. Our pre-processing is simpler
than other feature learning approaches that normalize image patches by dividing the standard devia-
tion and then whitening the normalized image patches [6]. In the second layer, we initialize K-SVD
with randomly sampled patch features. We set the number of the filters to be 3 times the filter size
in the first layer and to be 1000 in the second layer. We use batch orthogonal matching pursuit to
compute sparse codes. We set the sparsity level K in the two layers to be 5 and 10, respectively.

We perform max pooling in a 3-level spatial pyramid, partitioned into 1 x 1, 2 x 2, and 4 x 4
sub-regions. In the first layer, we run the matching pursuit encoder on 16 x 16 image patches over
dense grids with a step size of 4 pixels. In the second layer, we run the matching pursuit encoder on
the whole image to produce the image-level features. For computational efficiency, we perform our
spatial pyramid max pooling across the image with a step size of 4 pixels, rather than at each pixel.
Given the high dimensionality of the learned features, we train linear SVM classifiers for image
classification. Our experiments show that the linear SVM matches the performance of a nonlinear
SVM with a histogram intersection kernel, which is consistent with the observations in [24, 5]. This
allows our system to scale to large datasets. The regularization parameter in linear SVM is fixed to
10 in all the experiments. The filter size in the first layer is optimized by 5-fold cross validation on
the training set.

We compare HMP to SIFT based single layer sparse coding because of its success in both computer
vision and machine learning communities [24, 23, 5, 6]. We extract SIFT with 16 x 16 image patches
over dense regular grids with spacing of 8 pixels. We use the publicly available dense SIFT code
at http://www.cs.unc.edu/~lazebnik [14]. We perform sparse coding feature extraction using 1,000
visual words learned from 1,000,000 SIFT features, and compute image-level features by running
spatial pyramid max poolingon 1 x 1,2 x 2 and 4 x 4 sub-regions [24].

TS t!iiii§§

el | |
Siat!:ﬁ:
S O e P P

(5]

4]

W

"

il

il

M

W

|I

LR
SERS000

=
ﬁﬁﬁﬁﬂi--u
o= [=4m™

MAOWREEEER JArNF=s 15=0 iw
115N Gt R BB B~ d A Y™ 2 o
NWeRpEEEEEEE =P 1Y i ln =

Figure 2: Left: The overcomplete DCT dictionary with 144 filters of size 6 x 6. Right: The
dictionary with 144 filters of size 6 x 6 learned by K-SVD. It can be seen that the filters learned by
K-SVD is much more diverse than those generated by the overcomplete DCT.

Methods 3x3 4x4 5%x5 6x6 Tx7 &x8

DCT (orthogonal) 69.9+0.6 | 70.8+0.3 | 71.5+1.0 | 72.1£0.7 | 73.2+0.4 | 73.1+0.7
DCT (overcomplete) | 69.6+0.6 | 71.8+0.6 | 73.0+0.7 | 74.1+£0.4 | 73.74+0.6 | 73.440.8
K-SVD 71.8+0.5 | 74.4+0.6 | 75.94+0.7 | 76.8+0.4 | 76.3+0.4 | 76.14+0.5

Table 1: Classification accuracy with different filter sizes.
3.1 Object Recognition

Caltech-101 contains 9,144 images from 101 object categories and one background category. Fol-
lowing the standard experimental setting, we train models on 30 images and test on no more than 50
images per category.

Filter Size in the First Layer. We show recognition accuracy as a function of the filter size in
Table 1. The other parameters are fixed to the default values. We consider the orthogonal and
overcomplete DCT dictionaries, and the overcomplete K-SVD dictionary. We have found that the
orthogonal DCT achieves the highest accuracy when all the filters are chosen (without sparsity),
and the overcomplete DCT and K-SVD have good accuracy at the sparsity level 7' = 5. We keep
the overcomplete DCT dictionary and the K-SVD dictionary to have roughly similar sizes. From
Table 1, we see that the orthogonal DCT dictionary works surprisingly well, and is very competitive
with current state-of-the-art feature learning algorithms (see Table 3). The overcomplete K-SVD
dictionary performs consistently better than the DCT dictionary. The best filter size of K-SVD is
6 x 6, which gives 76.8% accuracy on this dataset, about 3% higher than the overcomplete DCT.
We show the overcomplete DCT dictionary and the K-SVD dictionary in Fig. 2. As we see, the K-
SVD dictionary not only includes the edge and dot filters, but also texture, multi-peaked, and high
frequency filters, and is much more diverse than the overcomplete DCT dictionary.

Spatial Pyramid Pooling. Spatial pyramid max pooling introduces the different levels of spatial
information, and always outperforms flat spatial max pooling (4 x4) by about 2% in our experiments.

Contrast Normalization. We evaluated HMP with and without contrast normalization. Our experi-
ments show that contrast normalization improves recognition accuracy by about 3%, which suggests
this is a very useful module for feature learning.

Sparsity. We show recognition accuracy as a function of the sparsity level K in Fig. 3. The filter
size is 6 x 6. When sparsity level in first or second layer varies, the other parameters are fixed to
the default setting. We see that the accuracy is more robust to the zero-norm in the first layer while
more sensitive in the second layer. The optimal K in the two layers is around 5 and 10, respectively.

Running Time. The total cost of learning the dictionary using K-SVD is less than two hour. BOMP
is about 10x faster in the second layer in our default setting, which dominates the running time
of feature extraction. All experiments are run on a single 3.30GHz Intel Xeon CPU with a single
thread. Efficient feature-sign search algorithm [15] is used to solve the sparse coding problem with
an L; penalty. We compare the running cost of different algorithms for a typical 300 x 300 image
in Table 2. HMP is much faster than single layer sparse coding and deconvolutional networks.

Layer 1 Layer 2

0.8 0.8

0.78 0.78
> >
Q 8]
o "_\ o
Q Q
< <

0.74 0.74

0.72 0.72

5 10 15 0 20 40 60
Zero—Norm Zero—Norm

Figure 3: Left: Recognition accuracy as a function of zero-norm in the first layer. Right: Recogni-
tion accuracy as a function of zero-norm in the second layer.

Methods HMP(DCT) | HMP(K-SVD) | SIFT+SC | DN
Time (seconds) 0.4 0.8 22.4 67.5

Table 2: Feature extraction time on a typical 300 x 300 image. HMP(DCT) means that the orthogonal
DCT dictionary is used in the first layer. HMP(K-SVD) means that the learned dictionary is used.
SIFT+SC denotes single layer sparse coding based on SIFT features.

Large Dictionary. We compared BTOMP and BOMP on a large dictionary with 10,000 filters in
the second layer. We found that BTOMP is about 5 times faster than BOMP when the number of
sub-groups is set to be 1000. BTOMP and BOMP have the almost same accuracy (77.2%), higher
than the standard setting (1000 filters in the second layer).

Comparisons with State-of-the-art Approaches. We compare HMP with recent single feature
based approaches in Table 3. In the first two columns, we see that HMP performs much better than
other hierarchial feature learning approaches: invariant predictive sparse decomposition (IPSD) [12,
13], convolutional deep belief networks (CDBN) [16], and deconvolutional networks (DN) [26]. In
the middle two columns, we show that HMP outperforms single layer sparse coding approaches
on top of SIFT features: soft threshold coding (SIFT+T) [6], locality-constrained linear coding
(LLC) [23] and Macrofeatures based sparse coding [5], and hierarchical sparse coding [25]. Notice
that LLC is the best-performing approach in the first ImageNet Large-scale Visual Recognition
Challenge [23]. In the right two columns, we compare HMP with naive Bayesian nearest neighbor
(NBNN) [4] and three representative kernel methods: spatial pyramid matching (SPM) [14], metric
learning for CORR kernel (ML+CORR) [10], and gradient kernel descriptors (KDES-G) [3, 2]. This
group of approaches are based on SIFT features except for gradient kernel descriptors that extract
patch-level features using weighted sum match kernels. Hierarchical matching pursuit is more than
10% better than SPM, a widely accepted baseline, and slightly better than NBNN and KDES-G in
terms of accuracy. To our best knowledge, our feature learning system has the highest accuracy
among single feature based approaches. Slightly higher accuracy (around 80%) has been reported
with multiple kernel learning that combines many different types of image features [8].

HMP 76.8+0.4 | SIFT+T [6] 67.7 SPM [14] 64.4
IPSD [12] 65.5 HSC [25] 74.0 ML+CORR [10] 69.6
CDBN [16] 65.4 LLC [23] 73.440.5 | NBNN [4] 73.0
DN [26] 66.9+1.1 | Macrofeatures [S] | 75.7+1.1 | KDES-G [2] 75.24+0.4

Table 3: Comparisons on Caltech-101. Hierarchical matching pursuit is compared to recently pub-
lished object recognition algorithms.

3.2 Scene Recognition

We evaluate hierarchical matching pursuit for scene recognition on the MIT-Scene dataset [20].
This dataset contain 15620 images from 67 indoor scene categories. All images have a minimum
resolution of 200 pixels in the smallest axis. This recognition task is very challenging since the large
in-class variability and small between-class variability in this dataset (see Figure 4). Following the

Kitchen

Figure 4: Sampled scene categories from the 67 indoor scene.

Methods | HMP | OB [18] | GIST [20] | ROI+GIST [20] | SIFT+SC
Accuracy | 41.8 37.6 22.0 26.0 36.9

Table 4: Comparisons on the MIT-Scene dataset. OB denotes the object bank approach proposed
in [18]. ROI denotes region of interest. SIFT+SC has similar performance with SIFT+OMP.

standard experimental setting [20], we train models on 80 images and test on 20 images per category.
We report the accuracy of HMP over the training/test split provided on the authors’s website in
Table 4. HMP has an accuracy of 41.8% with the filter size 4 x 4, more than 15 percent higher than
GIST features based approach, and about 5 percent higher than SIFT based sparse coding and object
bank. Object bank is a recently proposed high-level feature, which trains 200 object detectors using
the object bounding boxes from the LabelMe and ImageNet dataset, and runs them across an image
at different scales to produce image features. To the best of our knowledge, this accuracy is beyond
all previously published results on this data.

3.3 Event Recognition

We evaluate hierarchical matching pursuit for static event recognition on the UIUC-Sports
dataset [18]. This dataset consists of 8 sport event categories: rowing, badminton, polo, bocce,
snowboarding, croquet, sailing and rock climbing with 137 to 250 images in each. Following the
common experimental setting [18], we train models on 70 images and test on 60 images per cate-
gory. We report the averaged accuracy of HMP over 10 random training/test splits in Table 5. The
optimal filter size is 4 x 4. As we see, HMP significantly outperforms SIFT based generative graphi-
cal model, SIFT based single layer sparse coding, and the recent object bank approach significantly.
The accuracy obtained by HMP is the best published result on this dataset to date.

Methods HMP OB [18] | SIFT+GGM [17] | SIFT+SC
Accuracy | 85.7£1.3 76.3 73.4 82.7£1.5

Table 5: Comparisons on the UIUC-Sports dataset. GGM denotes the generative graphical model
proposed in [17].

4 Conclusion

We have proposed hierarchical matching pursuit, to learn meaningful multi-level representations
from images layer by layer. Hierarchical matching pursuit uses the matching pursuit encoder to
build a feature hierarchy that consists of three modules: batch tree orthogonal matching pursuit,
spatial pyramid matching, and contrast normalization. Our system is scalable, and can efficiently
handle full-size images. In addition, we have proposed batch tree orthogonal matching pursuit to
speed up feature extraction at runtime. We have performed extensive comparisons on three types
of image classification tasks: object recognition, scene recognition, and event recognition. Our
experiments have confirmed that hierarchical matching pursuit outperforms both SIFT based single
layer sparse coding and other hierarchical feature learning approaches: convolutional deep belief
networks, convolutional neural networks and deconvolutional networks.

Acknowledgements. This work was funded in part by an Intel grant and by ONR MURI grants
N00014-07-1-0749 and NO0014-09-1-1052.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing,
54(11):4311-4322, 2006.

[2] L. Bo, X. Ren, and D. Fox. Kernel Descriptors for Visual Recognition. In NIPS, 2010.

[3] L.Bo and C. Sminchisescu. Efficient Match Kernel between Sets of Features for Visual Recog-
nition. In NIPS, 2009.

[4] O. Boiman, E. Shechtman, and M. Irani. In Defense of Nearest-Neighbor based Image Classi-
fication. In CVPR, 2008.

[5] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning Mid-level Features for Recognition. In
CVPR, 2010.

[6] A. Coates and A. Ng. The Importance of Encoding versus Training with Sparse Coding and
Vector Quantization. In /ICML, 2011.
[7]1 G. Davis, S. Mallat, and M. Avellaneda. Adaptive Greedy Approximations. Constructive
Approximation, 13(1):57-98, 1997.
[8] P. Gehler and S. Nowozin. On Feature Combination for Multiclass Object Classification. In
ICCV, 2009.
[9] G. Hinton, S. Osindero, and Y. Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18(7):1527-1554, 2006.
[10] P.Jain, B. Kulis, and K. Grauman. Fast Image Search for Learned Metrics. In CVPR, 2008.
[11] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the Best Multi-Stage Archi-
tecture for Object Recognition? In ICCV, 2009.
[12] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning Invariant Features through
Topographic Filter Maps. In CVPR, 2009.
[13] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun. Learning
Convolutional Feature Hierarchies for Visual Recognition. In NIPS. 2010.
[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories. In CVPR, 2006.
[15] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient Sparse Coding Algorithms. In NIPS. 2007.
[16] H.Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations. In /CML, 2009.
[17] L. Li and L. Fei-Fei. What, Where and Who? Classifying Event by Scene and Object Recog-
nition. In /CCV, 2007.
[18] L. Li, H. Su, E. Xing, and L. Fei-Fei. Object Bank: A High-Level Image Representation for
Scene Classification and Semantic Feature Sparsification. In NIPS, 2010.

[19] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal Matching Pursuit: Recursive Function
Approximation with Applications to Wavelet Decomposition. In The Tiventy-Seventh Asilomar
Conference on Signals, Systems and Computers, pages 40-44, 1993.

[20] A. Quattoni and A. Torralba. Recognizing Indoor Scenes. In CVPR, 2009.

[21] R. Rubinstein, A. Bruckstein, and M Elad. Dictionaries for Sparse Representation Modeling.
Proceedings of the IEEE, 98(6):4311-4322, 2010.

[22] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient Implementation of the K-SVD Algorithm
using Batch Orthogonal Matching Pursuit. Technical report, 2008.

[23] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Guo. Locality-constrained Linear Coding for
Image Classification. In CVPR, 2010.

[24] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid Matching using Sparse Coding
for Image Classification. In CVPR, 2009.

[25] K. Yu, Y. Lin, and J. Lafferty. Learning Image Representations from the Pixel Level via
Hierarchical Sparse Coding. In CVPR, 2011.

[26] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional Networks. In CVPR, 2010.

