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Abstract. Based on the feature map principle, Sparse Kernel Ridge Regression 
(SKRR) model is proposed. SKRR obtains the sparseness by backward deletion 
feature selection procedure that recursively removes the feature with the small-
est leave-one-out score until the stop criterion is satisfied. Besides good gener-
alization performance, the most compelling property of SKRR is rather sparse, 
and moreover, the kernel function needs not to be positive definite. Experiments 
on synthetic and benchmark data sets validate the feasibility and validity of 
SKRR. 

1   Introduction 

Regression problem is one of the fundamental problems in the field of supervised 
learning. It can be thought of as estimating the real valued function from a samples set 
of noise observation. A very successful approach for regression is Support Vector 
Regression (SVR) [1-2] that attempts to simultaneously minimize empirical risk and 
confidence interval, leading to good generalization. Due to ε -insensitive loss func-
tion, SVR obtains a sparse model (prediction for a new input only needs the subset of 
training samples). Though very successful, SVR also has some disadvantages [3]: 

 The solution is usually not very sparse and the prediction speed for a new 
input is significantly slower than that of some other learning machines such 
as Neural Networks [4-5]. 

 Kernel function must satisfy Mercer’s condition. It is well known that dif-
ferent kernel functions will induce different algorithms, achieving different 
performance. However, kernel functions in SVR must satisfy Mercer’s posi-
tive definite condition, which limits the usable kernels. 

In order to deal with the problems mentioned above, Relevance Vector Machines 
(RVM) [3] is proposed, which is very elegant and obtains a high sparse solution. 
However, RVM needs to solve linear equations, whose cost is very expensive, and 
therefore, it is not applicable to large scale problems. 

In this paper, we propose a new learning model, Sparse Kernel Ridge Regression 
(SKRR) to overcome the above problems. In SKRR, samples are mapped into the 
feature space whose dimension is equal to the sample size, and then Ridge Regression 
(RR) [6] is implemented in the feature space. When the training process is completed, 
a backward deletion feature selection procedure is applied to obtain a sparse model. 
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Besides good generalization performance, the most compelling property of SKRR is 
its sparseness that is comparable with that of RVM. Another advantage of SKRR is 
that the kernel function needs not to be positive definite. Experiments on synthetic 
and benchmark data sets assess the feasibility and validity of SKRR. 

2   Kernel Ridge Regression 

Let { }1 1( , ), , ( , )l ly yx xL be empirical samples set drawn from 

( ) , 1, 2, ,i i iy f i lε= + =x L , (1) 

where iy  is corrupted by additive noise iε , whose distributions are usually unknown. 

Learning aims to infer the function ( )f x  from the finite data set 

{ }1 1( , ), , ( , )l ly yx xL . A classical method for the problem is Ridge Regression (RR), 

which is an extension of linear regression by adding a quadratic penalizing term: 

( )2 2

1
1

ˆ arg min
l

T
i l i

i

w y λ+
=

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠
∑w w x w , (2) 

where λ  is a fixed positive constant, called regularization coefficient. Equation (2) 
can be rewritten as 

( )( )ˆ arg min 2T T T Tλ= + −w w X X I w w X y , (3) 

where 
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Ridge regression [6] is a well-known approach for the solution of regression prob-
lems, which has a good generalization performance as well as SVR, and the model 
does not need the kernel function satisfying Mercer’s condition, moreover, there is an 
efficient leave-one-out cross-validation model selection method. In order to make RR 
applicable to the nonlinear problems, we generalize it by a feature map. Define a 
vector made up of a set of real-valued functions { }( , ) | 1, 2, ,ik i l=x x L , as shown  

[ ]1( , ), , ( , )
T

lk k=z x x x xL , (4) 

where '( , )k x x  is kernel function that needs not to be positive definite. 

We call  

[ ]{ }1| ( , ), , ( , ) ,
T n

lF k k R= = ∈z z x x x x xL  (5) 

feature space. In particular, [ ]{ }1 1 1( , ), , ( , ) | ( , ), , ( , )
T

l l i i i ly y k k=z z z x x x xL L  are l  

empirical samples in the feature space. Substituting iz  for ix , we have the Kernel 

Ridge Regression (KRR) [7] in the feature space F  
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( )( )ˆ arg min 2T T T Tλ= + −w w Z Z I w w Z y , (6) 

where 
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From equation (6) and (7), we can obtain 

1ˆ T Tλ −+w = [Z Z I] Z Y . (8) 

3   Sparse Kernel Ridge Regression 

For a suitable λ , KRR has a good generalization performance. Its key disadvantage is 
no sparseness, which seems to prohibit its application in some fields. In this paper, we 
consider how to delete redundant features and simultaneously keep good generaliza-
tion performance at an acceptable computational cost. 

3.1   Feature Selection by Backward Deletion 

In order to obtain the sparseness, a backward deletion procedure is implemented after 
the training process. Backward deletion procedure recursively removes the feature 
with the smallest leave-one-out score until the stop criterion is satisfied. 

Let ( )T λ= +H Z Z I  and T=b Z y , then equation (6) can be rewritten as 

( )( )ˆ arg min 2T TL= = −w w Hw w b . (9) 

When the thk  feature is deleted at the tht  iteration, let ( , )t kH  represent the sub-matrix 
formed by omitting the thk  row and column of H . Let ( , )t kR  represent the inverse of 

( , )t kH , ( , )t kw  the weights and ( , )t kf  the optimal value of L . According to equation 

(8), we have 

( )
{ }

( , ) ( , )

,

t k t k
i jij

i j P k

f b b
∈ −

= − ∑ R . (10) 

where P  is a set of remaining features (variables) at the tht  iteration.  
In terms of a rank-1 update [8-9], ( , )t kR  and ( , )t kw  can be formulated in equation 

(11) and (12) (see Appendix for details), where tR  represents the inverse of tH . 

( ) ( ) { }( , )
( ) ( )

, ,
( )

t t
ik kjt k t

tij ij
kk

i j P k= − ∈ −
R R

R R
R

. (11) 
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Together with t t
P P=w R b , equation (12) is simplified as 
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Substituting equation (11) into (10), we obtain 
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By the virtue of ( )t t
kj j k

j P

b w
∈

=∑ R , equation (14) is translated into 

( )2

( , ) ( , )
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t
kt k t k t
t

kk

w
f f fΔ = − =

R
. (15) 

We call ( , )t kfΔ  leave-one-out score. At each iteration, we remove the feature with 

the smallest leave-one-out score. The feature to be deleted can be obtained by the 
following expression. 

( )( , )

{ 1}
arg min t k

k P l
s f

∈ − +
= Δ . (16) 

( , )t sH( , )t sZ ( , )t sw

 

Fig. 1. Distribution of parameters after the ths  feature was deleted 

Figure 1 shows the distribution of parameters after the ths  feature was deleted. 

Note that the ( )1
th

l +  variable is bias that is reserved during the feature selection 

process.  
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At the tht  iteration, the total increase of loss function L  is 

t t opt
i i

i P

f b w L
∈

Δ = − −∑ . (17) 

where optL  is the minimum of  equation (9). We terminate the algorithm if  

t optf LεΔ ≥ . (18) 

where ε  is a small positive number. 
According to the derivation above, Backward Deletion Feature Selection (BDFS) 

can be described as the following Algorithm 1: 

Algorithm 1. BDFS 

1. Set  {1,2, , }P l= L , 1 1−=R H , 1 1=w R b ; 

2. For 1k =  to l , do: 

3.        (a) 
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kk
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R
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R R
R
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5.        (c) ( )( , ) ( )
, { }

( )

t
t s t t is

i s ti
ss

i P s= − ∈ −
R

w w w
R

; 

6.        (d) { }P P s= − , 1 ( , )t t s+ =R R , 1 ( , )t t s+ =w w . 

7.        (e) IF ( )1 1 1T t T T
P ε+ − ≥b w b w b w , Stop. 

8. End For 
9. End Algorithm 

3.2   Model Selection 

There exist free parameters including kernel parameter and regularization parameter 
in SKRR. In order to obtain good generalization, it is needed to choose the suitable 
parameters. Cross-validation is a model selection method often used in estimating the 
generalization performance of statistical classifiers. 10-fold cross-validation is often 
used in some kernel-based learning algorithms such as SVMs. Leave-one-out cross 
validation is the most extreme form of cross-validation. 

Leave-one-out cross validation error is an attractive model selection criterion since 
it provides an almost unbiased estimator of generalization performance [2]. However, 
this method is rarely adopted in the kernel machines because it is computationally 
expensive.  

Fortunately for SKRR, there is an efficient implementation for leave-one-out cross 
validation that only incurs a computational cost of 3( )O l  [10]. Let ( )E Γ  be leave-one-
out cross validation error, where Γ  denotes free parameters. 
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Lemma 1. [11-12]. ( )( ) 2

2

1
( )E

l
Γ = ΓB I - A y , where ( )ΓB  is a diagonal matrix with 

the thjj  entry ( )( )1 1 jjα− Γ , ( )jjα Γ  being the thjj  entry of 

( ) ( ) 1T Tλ
−

Γ = +A Z Z Z I Z . 

Let the singular value decomposition of Z  be 
T=Z UDV , (19) 

where ,U V  are orthogonal matrices, D  is a diagonal matrix. Substituting equation 

(19) into ( )ΓA , it can be simplified as 

( ) ( ) 1T T Tλ
−

Γ = +A UD D D I D U , (20) 

where T λ+D D I  is a diagonal matrix.  
Hence for different λ , we only need to perform once matrix decomposition. For 

clarity, here we give the detail steps of leave-one-out model selection algorithm in 
which σ  represents kernel parameter: 

Algorithm 2. LOO Model Selection 
For iσ , 1, 2, ,i q= L  

T=Z UDV ; 

For jλ , 1, 2, ,j p= L  
1( )T T T

kk k k j k kα λ −= +U D D D I D U ; 

( )1 1kk kkα= −B ; 

( ) ( )k kk k k kr y y= −B A  

{ }2

( )
1

1 l

ij k k
k

E r
l =

= ∑  

End for 
End for 

,
( , ) arg min( )opt opt

iji j
Eλ σ = . 

Thus, according to the analysis in section 3.1 and 3.2, SKRR can be described in 
the following Algorithm 3: 

Algorithm 3. SKRR 
1. Let λ  be noise variance, and choose the kernel parameters 

using LOO model selection algorithm; 
2. Train KRR using the selected parameters; 
3. Implement BDFS for KRR; 
4. Re-estimate λ  using LOO model selection algorithm; 
5. Re-train KRR on the simplified features. 
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4   Simulation 

In order to evaluate the performance of the proposed algorithm, we performed SKRR 
on three data sets: Sinc, Boston Housing and Abalone data sets, and compared its 
performance with that of KRR, SVR, and RVM. For the sake of comparison, different 
algorithms use the same input sequence. The elements of Gram Matrix are con-

structed using Gaussian kernel of the form 
2

2
2

( , ) exp
2

k
σ

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

x y
x y . For SVR and 

RVM, we utilize 10-fold cross validation procedure to choose the free parameters. For 
all datasets, parameter ε  in BDFS is set 0.01. Large amounts of experiments show 
that it is a good selection. 

4.1   Toy Experiment 

The Sinc function sin( ) / (0,1)y x x Nσ= +  is a popular choice to illustrate support 

vector machines regression. We generate training samples from Sinc function at 100 
equally-spaced x -value in [ 10,10]−  with added Gaussian noise of standard deviation 

0.1. Results are averaged over 100 random instantiations of the noise, with the error 
being measured over 1000 noise-free test samples in [ 10,10]− . The decision func-

tions and support vectors obtained by SKRR and SVR with 0.1ε =  are shown in 
Figure 2. Support vectors number and mean square error are summarized in Table1. 
For Sinc data set, SKRR outperforms other three algorithms. SKRR and RVM obtain 
similar support vectors number that is significantly less than that of SVR. 

Table 1. Generalization error obtained by the four algorithms on Sinc data set. MSE denotes 
mean square error and NSV denotes support vectors number 

 SKRR KRR SVR RVM 
MSE 0.85 ± 0.42 0.88 ± 0.41 1.45 ± 0.64 0.98 ± 0.47 
NSV 7.20 ± 0.49 100 ± 0.00 35.41 ± 4.71 6.97 ± 0.38 

  

Fig. 2. Support vectors and decision boundary obtained by SKRR and SVR. Real red lines denote 
the decision boundary and dot lines denote the Sinc function; circles denote the support vectors. 
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4.2   Benchmark Comparison 

Boston Housing and Abalone data sets that come from STATLOG COLLECTION [13] 
are popular choices to evaluate the performance of algorithms. Boston Housing data set 
includes 506 examples, 13 attributes of each example and Abalone data set includes 
4177 examples, 7 attributes of each example. For the Boston Housing data set, we aver-
age our results over 100 random splits of the full dataset into 481 training samples and 
25 testing samples. For the Abalone data set, we average our results over 10 random 
splits of the mother dataset into 1000 training samples and 3177 testing samples. Before 
experiments, we scale all training samples into [-1, 1] and then adjust testing samples 
using the same linear transformation. The results are summarized in Table 2 and 3. 

Table 2. Generalization error obtained by the four algorithms on Boston Housing data set. MSE 
denotes mean square error and NSV denotes support vectors number. 

 SKRR KRR SVR RVM 
MSE 10.05 ± 6.72 9.75 ± 6.90 10.51 ± 7.99 10.08 ± 6.82 
NSV 52.23 ± 1.76 481.00 ± 0.00 165.98 ± 4.90 48.80 ± 2.49 

From the experimental results (Table 1, 2 and 3), we observe the following 

 SKRR, KRR and RVM obtain similar performance and are slightly superior 
to SVR. 

 Both SKRR and RVM are rather sparse. Support (relevance) vectors number 
of SKRR and RVM is much less than that of SVR.  

Table 3. Generalization error obtained by the four algorithms on Abalone data set. MSE 
denotes mean square error and NSV denotes support vectors number. 

 SKRR KRR SVR RVM 
MSE 4.64 ± 0.12 4.61 ± 0.10 4.66 ± 0.11 4.59 ± 0.12 
NSV 18.90 ± 5.38 1000 ± 0.00 468.90 ± 58.77 11.30 ± 2.45 

5   Conclusion 

Backward deletion feature selection provides a state-of-the-art tool that can delete 
redundant features and simultaneously keep good generalization performance at an 
acceptable computational cost. Based on BDFS, we propose SKRR that obtains high 
sparseness. Further application of BDFS includes condensing the two-stage RBF 
Networks. Application to linear regression is in progress. 
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Appendix   

The matrix inversion formula for a symmetric matrix with block sub-matrices is given 
in the following Lemma 2. 

Lemma 2 [8]: Given invertible matrices A  and C , and matrix B , the following 
equality holds: 

1 1 1 1 1 1 1

1 1 1 1 1 1

T

T T T

− − − − − − −

− − − − − −

⎡ ⎤+ −⎡ ⎤
= ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

A B A A BE B A E BC
B C C B E C C B D BC

, (A.1) 

where 
1

1

T

T

−

−

= −
= −

D A BC B

E C B A B
. 

Equation (11) can be derived in terms of Lemma 2. We assume here that 
⎡ ⎤
⎢ ⎥
⎣ ⎦

B

C
 is 

the thk  feature to be deleted. Thus in our problem, ( , )t kR  corresponds to 1−A , and 
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( )t
kkR  corresponds to 1−E , and ( )t

ikR  corresponds to 1 1− −−A BE , { }i P k∈ − . Ob-

serving the top left block of the last part in equation (A.1), we have 

1 1 1 1
1

1

T− − − −
−

−+ A BE E B A
A

E
, (A.2) 

which corresponds to 

( ) { }( , )
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R R

R
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Hence, we have 
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. (A.4) 
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