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Working Set Selection Using Functional Gain for LS-SVM

Liefeng Bo, Licheng Jiao, and Ling Wang

Abstract—The efficiency of sequential minimal optimization (SMO) de-
pends strongly on the working set selection. This letter shows how the im-
provement of SMO in each iteration, named the functional gain (FG), is
used to select the working set for least squares support vector machine (LS-
SVM). We prove the convergence of the proposed method and give some
theoretical support for its performance. Empirical comparisons demon-
strate that our method is superior to the maximum violating pair (MVP)
working set selection.

Index Terms—Fast algorithm, least squares support vector machine (LS-
SVM), sequential minimal optimization (SMO).

I. INTRODUCTION

Support vector machines (SVMs) [1] are powerful tools for classifi-
cation and regression. Least squares support vector machine (LS-SVM)
[2] is a variant of SVMs which replaces the hinge loss function with
the squared loss function. When no bias term is used in the LS-SVM
formulation, similar expressions are obtained as with kernel ridge re-
gression [3] and Gaussian processes regression [4].

LS-SVM is formulated as convex quadratic programming with
equality constraint; hence, its solution is obtained by solving a set of
linear equations. Although this problem is, in principle, solvable, in
practice it is intractable for a large data set by the classical techniques,
e.g., Gaussian elimination, because their computational complexity
usually scales cubically with the size of training samples. To make
LS-SVM applicable to large scale problems, Suykens et al. [5]
presented a conjugate gradient (CG) algorithm. Chu et al. [6] gave
an improved conjugate gradient algorithm. Keerthi and Shevade [7]
proposed a sequential minimal optimization (SMO) algorithm where
the maximum violating pair (MVP) is selected as the working set.
Jiao et al. [8] developed a fast sparse approximation algorithm for
LS-SVM. Empirical comparisons [6], [7] have shown that SMO is
more efficient than CG and improved CG for the large scale data sets.

Inspired by [9] and [10], we present an improved working set se-
lection using functional gain (FG) for LS-SVM. It selects the variable
pair leading to a great functional gain as the working set. Although
the working set selection using functional gain is first proposed for
SVMs, intuitively, it is more natural for LS-SVM since it does not suffer
from the boundary effects caused by inequality constraints ensuring the
sparsity in SVMs. We prove that it achieves a greater or equal func-
tional gain than the MVP method. Experiments show that the proposed
method significantly reduces the training time of LS-SVM for large C'
values.

II. WORKING SET SELECTION USING FG

Consider a classification or regression problem with training samples
{x;, yi}f: 1 where x; is the input sample and y; is the corresponding
target. Note that the variables in bold face denote the vector. In the
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feature space, LS-SVM takes the form y = w” (x) 4+ b where the
nonlinear mapping ¢(x) maps the input data into a high-dimensional
feature space. To obtain a linear predictor, LS-SVM solves the fol-
lowing optimization problem:

4
N C 2
m1n{§w w—i—E Eﬂ ei}
st yi=wliox)+b4en, i=1,....0 1)

where C' > 0 is the regularization parameter. Its Wolfe dual problem is

max{ D(a) = —— aiago(xi) o

ok k)
¢
Z(}:i =0. (2)
=1

The form ¢(x;)” o(x;) in (2) is often replaced with a so-called pos-
itive—definite kernel function k(x;,%;) = ¢(x;)" ¢(x;), which can
be expressed as the inner product of two vectors in some feature space
and, therefore, can be used in LS-SVM. The Lagrangian for (2) is

maX{D(a)_— Zn ajk(xi,x;) Z 204—2(\ 7/,+/iZm} .

1,7=1

3)
Define

F,=F(a)=

Za k(xi,x;) —

The Karush—-Kuhn-Tucker (KKT) conditions for the dual problem are

047 + Yyi. 4)

F,+38=0 fori=1,2,....( 5)

Keerthi and Shevade [7] suggested using SMO algorithm to solve
(2). Its flowchart is shown in algorithm 1.

Algorithm 1: SMO algorithm for (2)

1) Setk =0,a* =0,and F* = F(a*) = y.

2) If the stop criterion is satisfied, stop. If not, select
p1 = arg max; (FF) and ps = arg min; (FF).

3) Solve the following subproblem with the variable ¢

E(xi,x;)

o 1[-t1" k(xi, %)+ &
tpL:argmaX i ( s o L
‘ t k(xj.x;) + &

k(xj.xi)
[T R

4) Set (1;§1+1 = ak — t°Pt, aﬁjl =

FF —|—t°P°L(x,,xpl) — P (%, %Xp, ), 7 € {1, L3\ {P1sD2 )

Fk“ Fl 4+ 9P (h(%p,. %5, ) + (1)/(C)) — g k(xp,,Xps ),

Fk+1 = Flib + P R (Xpy s Xpy ) — 1P (K(Xpy s Xpy ) +
/(C)) and ¥ = k + 1; go back to step 2).

lc opt E+1
772 + t ’ Fz -

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

In the following, we will analyze the shortage of the MVP method
and present our method Suppose (v, o5 ) is the current working vari-
ables and ak 1 = oF — . Together w1th the equality constraint, we
have al"H = a] + t. Thus, the functional gain of SMO in the current
1terat10n can be written as the following:

Do) — D(a")

ke 1[-t]"
_g(z,J)_mtaX{ 2|:f]

k(X,‘,Xi) =+ % k(X,‘,X]')
k(xj.xi)  k(x,%;) + &

ETES o

Solving (6), we get

opt __ F]k - Fik
=T @)
Z 5 u0.)

where p(i,7) = k(x:, xi) + k(xj,%x;) — k(xi, x;) — k(x;,%;). Sub-
stituting ¢°"" into (6), we have

(i,j) = ((Fk — Fk)z

_— 8
(i) ®

The key observation is that the maximum violating pair only max-
imizes the numerator in (8) without considering the effect of (4, ),
possibly leading to a small gain. For a very small C, the effect of (7, j)
can be ignored, so the MVP method is suitable. However, for a very
large C', ju(4, j) plays an important role in the functional gain. Ideally,
we want to select the variable pair maximizing (8). Unfortunately, this
needs to evaluate (8) for all £(¢ — 1)/2 possible variable pairs, which
incurs a high computational cost. A simple alternative is to fix one vari-
able and find the other by maximizing (8). This results in the following
working set selection.

Algorithm 2: FGWSS (working set selection using functional gain)

1) Select v; = arg max;(abs(F¥)).

2) Select v = arg nlax,;(gl‘(7)1 ,i)).

Some theoretical properties of the proposed working set selection
are the following.
Theorem 1: For the same F¥, FGWSS always gives a greater or
equal functional gain than the MVP method.
Proof: There are two possibilities in step 1) of FGWSS. One is
v] = arg maxl-(Fik) = p; and the otheris v; = arg maXi(—Fik) =
arg min; (FF) = p». For the former case, we have

g (v1.v2) = max(g" (o1 1))

> g" (v1,p2) = 9" (p1,p2)- ©)
For the latter case, we have
g (01, 02) = max(g"(01,1))
> g"(vi,p1) = 9" (p2,p1) = ¢" (p1,p2).  (10)

This completes the proof of Theorem 1.
Theorem 2: The sequence {a"} generated by SMO using FGWSS
converges to the global optimal solution of (2).
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TABLE I

COMPARISONS OF THE THREE ALGORITHMS ON THE MEDIUM AND LARGE SCALE DATA SETS. KERNEL DENOTES THE NUMBER OF KERNEL EVALUATIONS
(WITHOUT CONSIDERING THE CACHE) WITH EACH UNIT CORRESPONDING TO 108 EVALUATIONS. DUAL DENOTES THE DUAL OBIJECTIVE
FUNCTION VALUE. TIME DENOTES THE TRAINING TIME WITH EACH UNIT CORRESPONDING TO 1 s
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13)

Adult4, 4781 samples with 02 = 10
log,,(C) CG SMO using MVP SMO using FG
Kernel Dual Time Kernel Dual Time Kernel Dual Time
-3 0.914 1.697 10.375 0.787 1.697 15.188 0.785 1.697 16313
-2 1.828 14.026 11.047 0.710 14.026 13.750 0.710 14.026 15.109
-1 4.112 112.854 13.047 0.671 112.854 14.391 0.667 112.854 14.750
0 10.282 956.486 18.391 0.837 956.485 15.657 0.744 956.485 15.442
1 28.332 7296.708 34.047 3.242 7296.703 26.625 2.129 7296.704 24.078
2 84.768 42222.787 83.485 18.036 42222.749 46.234 8.703 42222.763 42.328
3 261.614 197013.627 237.141 76.768 197013.432 94.281 29.189 197013.527 80.234
Sum 391.850 247618.184 407.553 101.051 247617.946 225.766 42.927 247618.056 208.234
Adult7, 16100 samples with o = 10
log;0(C) CG SMO using MVP SMO using FG
Kernel Dual Time Kernel Dual Time Kernel Dual Time
-3 15.551 5.208 396.734 9.453 5.208 353.422 9.450 5.208 362.718
-2 31.101 41.458 756.218 8.003 41.457 295.531 8.030 41.457 303.484
-1 75.162 356.490 1774.000 7.257 356.490 258.593 7.264 356.490 265.203
0 204.750 3210.464 4767.391 9.583 3210.463 340.844 8.379 3210.463 303.469
1 572.783 27045.671 13250.562 38.893 27045.652 1224.922 24.082 27045.658 749.485
2 1775.368 189686.214 40946.766 262.862 189686.050 6033.843 114.094 189686.115 1794.765
3 5720.054 1135750.883 | 132282.828 | 1537.397 | 1135749.808 | 24855.703 524.150 1135750.292 | 10718.719
Sum 8394.769 1356096.387 | 194175.499 | 1873.447 | 1356095.126 | 33362.858 | 695.447 1356095.683 | 15497.843
Bank8fh, 8192 samples with 0% = 10
log,0(C) CG SMO using MVP SMO using FG
Kernel Dual Time Kernel Dual Time Kernel Dual Time
-3 2.684 0.521 12.891 1.744 0.521 13.907 1.749 0.521 15.735
-2 4.696 4.423 14.609 1.777 4.423 14.078 1.776 4.423 15.657
-1 10.064 23.794 19.282 1.677 23.794 13.922 1.673 23.794 15.401
0 16.773 147.247 25.078 1.756 147.246 13.688 1.560 147.246 14.547
1 41.597 1311.812 46.765 6.247 1311.780 28.812 2.145 1311.806 17.329
2 103.993 12692.571 100.782 49.052 12692.430 101.515 6.689 12692.512 32.422
3 299.232 124027.392 270.141 474.486 124025.938 687.594 52.285 124026.634 122.844
Sum 479.040 138207.759 489.548 536.740 138206.152 873.516 67.876 138206.935 233.940
House8l, 22784 samples with 0% = 1
log,(C) CG SMO using MVP SMO using FG
Kernel Dual Time Kernel Dual Time Kernel Dual Time
-3 41.525 0.440 475.625 13.232 0.440 176.937 13.230 0.440 184.375
-2 77.859 3.318 879.391 12.190 3.318 162.906 12.199 3.318 169.829
-1 155.720 24.535 1744.047 10.794 24.535 144.766 10.823 24.535 150.406
0 358.155 198.157 3993.969 14.492 198.154 196.266 10.461 198.155 145.484
1 887.601 1741.838 9879.125 57.794 1741.804 761.437 17.461 1741.822 219.093
2 2522.656 15831.875 28037.407 470.266 15831.489 5767.265 94.658 15831.664 635.016
3 7573.160 145684.423 84162.797 | 4546.251 145680.445 46062.765 893.784 145681.703 5005.063
Sum 11616.677 163484.586 129171.361 | 5125.019 163480.186 | 53271.342 | 1052.605 163481.636 6509.266
Proof: Combining (7) and (8), we have infinitely in this subsequence. Let I'" C T be the set of the superscripts
corresponding to {1, vz }; then, we have
k+1 ky (tumy (% + #(i:j))
D(a""") = D(a”) = 5 . 1n Fo(@) = Fiy(8) = gnklep(F’” (@*) = F, (a*)).

The positive—definite kernel function implies w(z,j) >
with [|a* ™' — o ||2 = 2(#°"*)2, we have the following:

0. Together

k+1 k2
D) - D(at) > I m el

(12)

Inequality (12) implies that { D(a*)} is a decreasing sequence. To-
gether with D(a*) > —oo, we have that {D(a*)} converges. Ap-
plying (12) again, we get that {a*T' — a*} converges to 0.

Since D(a) is a positive—definite quadratic form, the set
{a| D(a) > D(a®)} is a compact set. {a*} lies in this set, so
it is a bounded sequence. Let & be the limit point of any convergent
subsequence {a*},k € T. Since there are only a finite number of
variables, there exists at least one working set {v1, v2} which occurs

According to [7, Lemma 1], (13) can be decomposed into

Fy (a) - Fy,(a) = k‘—Nl(i)Ilk}

where A (k) = F,, (o)
Fo,(@*t)and 43(k) =

SMO, we know
Ay (k) = 0. (15)
Since {a"T" — a*} converges to 0, limp oo ger+ A1 (k) = 0 and
limy— oo ger= As(k) = 0. Thus, we get
F, (&) — F,,(a&) = 0. (16)

Foy (@271, As(k)
k

(A (k) + Ao (k) + As(k)) (14)

er

— = F‘,,1 ((1k+]) -
F,,(a*') — F,,(a"). From step 4) of
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According to Theorem 1, we have

(Fuy (@)= Foy (@) _ (Fi(a®) - Fj(a"))’

Vije{l,... ().

2 (&+nlvr,v)) 2 (&+n(i.J))

an
Considering the limit of (17), we get
(Fi(@) — Fi(@))®
= i (B — Tk )))2
=(,_lm_ (F@") = Fia")
—_ I 1 F, _F
= 24 Cp(vr,v2) /cﬁo};l,ikler*( () (@)
24 Culi,g) B .
S 2+ Cﬂ(vh'lJz)(Fvl(a) Foy(@))
=0 Vije{l...(} 18

Equation (18) implies Fi (@) = Fr(@),...,= Fy(a). From the
KKT conditions, @ is the global optimal solution of (2). Since D(«) is
strictly convex, (2) has a unique global optimal solution and we denote
it as a*. Assume that {a"} does not converge to . Then, Ye > 0,
there exists an infinite subset I such that lo* — a*]] > e Vk €
I'. Because {aF), Wk € I'isa compact set, there is a convergent
subsequence. Without loss of generality, we assume its limit to be a.
Thus, we have ||@ — a*|| > €. Since @ is the global optimal solution of
(2), this contradicts that o™ is the unique global optimal solution. The
proof of Theorem 2 is completed.

III. EMPIRICAL STUDY

In order to evaluate the performance of the proposed method, we
compare it with SMO and improved CG on four benchmark data sets.
All the three algorithms are implemented in VC++ 6.0 and are run
on a personal computer with 2.4-GHz processors, 1.5-GB memory and
Windows XP operation systems. The size of the cache is set to 800 MB.
The optimization process is terminated when the maximal violation of
the KKT conditions is within 0.001.! For the regression data sets, both
the input and the output are scaled into the interval [—1, 1].

The Gaussian kernel k(x;, X;) = exp(—||x; — x;||3/20?) is used
to construct LS-SVM. For Adult4 and Adult7 data sets, the values of 2
are the same as in [11]. For Bank8fh and House8I data sets, the values
of o are determined by the tenfold cross validation on a small random
subset.

Table I reports the number of kernel evaluations and the training
time of CG, SMO using MVP, and SMO using FG. As we can see, our
method beats its competitors and achieves the better performance on
the cases we have studied. Our method significantly outperforms CG,
in particular, for the large scale data sets. At the small C' values, our
method exhibits similar performance with the MVP method; however,
at the large C' values, our method significantly outperforms the MVP
method. The discussions below (8) explain the reason. Note that for
medium scale problems, the whole kernel matrix can be fitted into the
cache, so the real number of kernel evaluations is at most (2, which
explains why the training time does not match the number of kernel
evaluations shown in Table I.

I'The source code for our method is available at http://see.xidian.edu.cn/grad-
uate/lftbo/. The classification data sets Adult4 and Adult7? come from
http://www.reasearch.microsoft.com/~jplatt/smo.html. The regression data sets
Bank8fh and House8I can be accessed at http://www.liacc.up.pt/~ltorgo/Re-
gression/DataSets.html
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IV. CONCLUSION

In this letter, we have proposed a new method for selecting the
working set for LS-SVM and proved its asymptotic convergence.
Our method effectively utilizes the functional gain information and
achieves fast convergence. Empirical comparisons demonstrate that
the new algorithm is significantly faster than other existing algorithms.
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