
1446 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

Training Hard-Margin Support Vector Machines
Using Greedy Stagewise Algorithm

Liefeng Bo, Member, IEEE, Ling Wang, and Licheng Jiao, Senior Member, IEEE

Abstract—Hard-margin support vector machines (HM-SVMs)
suffer from getting overfitting in the presence of noise. Soft-margin
SVMs deal with this problem by introducing a regularization term
and obtain a state-of-the-art performance. However, this disposal
leads to a relatively high computational cost. In this paper, an al-
ternative method, greedy stagewise algorithm for SVMs, named
GS-SVMs, is presented to cope with the overfitting of HM-SVMs
without employing the regularization term. The most attractive
property of GS-SVMs is that its computational complexity in the
worst case only scales quadratically with the size of training sam-
ples. Experiments on the large data sets with up to 400 000 training
samples demonstrate that GS-SVMs can be faster than LIBSVM
2.83 without sacrificing the accuracy. Finally, we employ statistical
learning theory to analyze the empirical results, which shows that
the success of GS-SVMs lies in that its early stopping rule can act
as an implicit regularization term.

Index Terms—Classification, greedy stagewise algorithm, sup-
port vector machines (SVMs), Vapnik–Chervonenkis (VC) dimen-
sion.

I. INTRODUCTION

H ARD-MARGIN support vector machines (HM-SVMs)
have a risk of getting overfitting in the presence of noise

[1], [2]. To deal with this problem, soft-margin SVMs [3], [4] in-
troduce the regularization parameter that allows some training
error to obtain large margin. This is a highly effective mech-
anism for avoiding overfitting, which leads to good general-
ization performance. Though very successful, we can identify
shortcomings of soft-margin SVMs.

1) The training procedure of soft-margin SVMs amounts to
solving a constrained quadratic programming. Although
the training problem is, in principle, solvable, in prac-
tice it is intractable by the classical optimization tech-
niques, e.g., interior point method, because their com-
putational complexity usually scales cubically with the
size of training samples.

2) The regularization parameter depends on the task at
hand; hence, there is no foolproof method for deter-
mining it before training. Usually, we have to resort to

Manuscript received March 1, 2007; revised October 18, 2007; accepted Feb-
ruary 13, 2008. First published July 15, 2008; last published August 6, 2008
(projected). This work was supported by the National Natural Science Foun-
dation of China under Grant 60372050 and the National Defense Preresearch
Foundation of China under Grant A1420060172.

The authors are with the Key Laboratory of Intelligent Perception and Image
Understanding of Ministry of Education of China, the Institute of Intelligent
Information Processing, Xidian University, Xi’an, Shaanxi, 710071 P. R. China
(e-mail: blf0218@ 163.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2008.2000576

a cross-validation procedure that is wasteful in compu-
tation [5].

In the past few years, many fast iterative algorithms were pre-
sented to cope with problem 1). Chunking algorithm [6] splits
the variables into inactive and active sets (also named working
set). At first, an arbitrary subset of the variables is selected as the
working set. After a general optimization algorithm, e.g., inte-
rior point method is applied to the subset, the support vectors
in the working set are reserved and the rest are replaced with
the variables that violate Karush–Kuhn–Tucker (KKT) condi-
tions. However, this algorithm still is inapplicable in case the
number of support vectors is very large due to high memory re-
quirement. Joachims [7] identified this shortage and developed
an efficient decomposition scheme, named SVM . The key
idea of SVM is to find a feasible direction of steepest de-
scend, in which the number of nonzero elements is set to be a
small constant. Platt [8] took the decomposition idea to an ex-
treme where the size of the working set of sequential minimal
optimization (SMO) algorithm is set to be two and hence an an-
alytical solution for subproblem is obtained. Keerthi et al. [9]
and Shevade et al. [10] further improved the performance of
SMO by introducing the maximal violating pair working set se-
lection. Hastie et al. [11] derived an algorithm that can fit the
entire path of SVM solutions for every value of the regulariza-
tion parameter. Some other examples include Kernel–Adatron
[12], SimpleSVM [13], SVMTorch [14], and so on.

Recently, there have been many attempts to approximately
train SVMs. Collobert et al. [15] proposed a parallel mixture of
SVMs. Dong et al. [16] introduced a parallel optimization step
to quickly remove most of the nonsupport vectors for speeding
up SVMs. Bakir et al. [17] selectively removed training sam-
ples using probabilistic estimates related to editing algorithms.
Bordes et al. [18] presented an online algorithm to compute
an approximation solution of SVMs. Tsang et al. [19] showed
that many kernel methods can be equivalently formulated as
minimum enclosing ball problems in computational geometry
and presented core vector machine (CVM) to compute the
approximate solution of SVMs. Keerthi et al. [20] built sparse
SVMs using a matching pursuit-like algorithm. These algo-
rithms proved to be effective and boosted the development of
large scale SVMs.

Based on a preliminary work [21], a greedy stagewise al-
gorithm for approximately training SVMs (GS-SVMs) is pre-
sented to deal with the overfitting of HM-SVMs. Instead of em-
ploying the regularization term, GS-SVMs attempt to control
the complexity of the hypothesis space by themselves. They it-
eratively build the decision function by adding one kernel func-
tion at one time. At each iteration, GS-SVMs determine the
index and the weight of the new kernel function to be included

1045-9227/$25.00 © 2008 IEEE

BO et al.: TRAINING HM-SVMS USING GREEDY STAGEWISE ALGORITHM 1447

by an optimization problem in two variables, whose solution
can be obtained in closed form. This procedure is repeated until
the loss function stops decreasing. The proposed algorithm pos-
sesses the two following attractive properties.

1) The computational complexity of GS-SVMs is ,
where is the number of support vectors and is the
number of training samples. Even in the worst case of
all the training samples being the support vectors, the
computational complexity is only .

2) No extra regularization parameter is required.
Extensive empirical comparisons validate the efficiency and
effectiveness of GS-SVMs. Moreover, we employ statistical
learning theory to analyze the empirical results, which shows
that the success of GS-SVMs lies in that their early stopping
rule can act as an implicit regularization term.

This paper is organized as follows. In Section II, a brief
introduction of SVMs is given. The reason that the dual of
HM-SVMs can be regarded as a loss function is interpreted in
Section III. GS-SVMs is detailed in Section IV. Experiments
which demonstrate the speed and generalization performance
of GS-SVMs are given in Section V. In Section VI, we explore
the reason for the success of GS-SVMs. In Section VII, the
contributions of this paper are summarized and the further
research direction is indicated.

II. SUPPORT VECTOR MACHINES

In this section, we briefly introduce SVMs. For more details,
the interested reader can refer to [22] and [23]. In classification,
we are given a set of training samples , where is
the input sample defined on , is the corresponding output,
and is the number of training samples. The aim is to determine
an approximation function of the target function ,
which best represents the relationship between the inputs and
the outputs. In the feature space, SVMs model takes the form

where the nonlinear mapping maps the
input data into a higher dimensional feature space whose dimen-
sion can be infinite. We have also dropped the threshold for the
sake of simplicity. The generalization performance of SVMs
usually is not affected by this drop in most cases (one should
be cautious with very unbalanced data sets where the threshold
can be helpful). To obtain a classifier, HM-SVMs solve the fol-
lowing optimization problem:

(1)

Its Wolfe dual is

(2)

According to Mercer’s theory [24], any positive–definite
kernel function can be expressed as the inner product
of two vectors in some feature space, and therefore, it can be

used in SVMs. Replacing with , we
get

(3)

To deal with the nonseparable case, one often uses
soft-margin SVMs

(4)

For a new sample , we can predict its label by

(5)

where is the solution of (4).

III. RKHS NORM VIEW FOR SVMS

The key conclusion in this section is that the Wolfe dual of
HM-SVMs can be regarded as the loss function induced by a
reproducing kernel Hilbert space (RKHS) norm, which is the
basis of developing greedy approximation algorithms. Similar
conclusion about support vector regression is reported by Girosi
[25].

Theorem 1 [24]: Let , a real symmetric function
, be positive–definite symmetric if and only

if for every set of real numbers and every set of
vectors , we have .

Definition 1 [24]: A Hilbert space of function
, , is called an RKHS with dot product and

norm if there exists a function
satisfying and spanning

, i.e., .
We call , where , reproducing

norm. RKHS induced by satisfies the following
three properties:

1) where ;
2) , where and are finite;
3) for , ,

, where is the inner product of RKHS. In
particular, .

According to the property 2), we can derive that the decision
function of SVMs, , belongs to RKHS . We assume
that the unknown target function belongs to RKHS .
Measuring the distance by RKHS norm between the target func-
tion and the approximation function , we have the
following loss function:

(6)

1448 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

Fig. 1. Visualization of the solution.

where is RKHS norm. Equation (6) can be expanded as

(7)

Using the reproducing property 3) of kernel function, we can
transform (7) into

(8)

Since is the output of target function on the point , it is
reasonable to estimate it by (for noiseless data,).
Thus, we have

(9)

Eliminating the constant term, we can estimate
by

(10)

It is easily checked that (10) completely amounts to (5), which
enlightens us to take the Wolfe dual of SVMs as the loss func-
tion induced by RKHS norm. If we further constrain

smaller than , we can obtain soft-margin SVMs.

IV. GREEDY STAGEWISE ALGORITHM FOR SVMS

Though (10) is, in principle, solvable by the classical op-
timization techniques, in practice, it suffers from two serious
problems: 1) its computational complexity usually scales cubi-
cally with the size of training samples; and 2) there often is a
risk of getting overfitting due to no regularization term.

In this section, we will deal with the aforementioned
two problems by GS-SVMs which attempts to fast approx-
imate (10) while avoiding the overfitting. The dictionary

used by GS-SVMs is a set
of the kernel functions centered on the training samples.
GS-SVMs iteratively build the decision function by adding
one kernel function at a time. At each iteration, GS-SVMs
determine the index and the weight of the next kernel function
to be included by an optimization problem in two variables.
This procedure is repeated until the loss function (10) stops
decreasing.

There are many efforts for greedy learning algorithms. In gen-
eral, the existing methods can be roughly classified into two
groups. The first group is called greedy stepwise approach that
readjusts the weights of the previously entered basis functions
when a new basis function is added. The typical algorithms in-
clude orthogonal least squares learning algorithms [26], kernel
matching pursuit (backfitting and prefitting version) [27], fast
sparse approximation for least square SVMs [28], and so on.
The second group is called greedy stagewise approach that fixes
the weights of the previously entered basis functions when a new
basis function is added. The typical algorithms include matching
pursuit [29], AdaBoost [30], LogitBoost [31], Doom II [32],
gradient boosting [33], leveraged vector machines [34], and so
on.

Our algorithm can be classified into the second group. The
most important difference among the algorithms in the second
group is the loss function they optimize. Matching pursuit uses a
squared loss function; AdaBoost and leveraged vector machines
use an exponential loss function; LogitBoost uses a negative bi-
nomial log-likelihood; Doom II uses a margin loss function in-
duced by hyperbolic tangent function; however, GS-SVMs use
the dual of HM-SVMs as a loss function. The reason that the
dual of HM-SVMs can be regarded as a loss function can be
found in Section III. Another major difference is caused by the
basis functions. In previous boosting algorithms, it is a tradition
that the basis functions are trees and hence the weights corre-
spond to features. An exception is leveraged vector machines
which share a similar idea with GS-SVMs and build kernel
machines by greedy stagewise algorithm. In GS-SVMs, whose
basis functions are the kernel functions centered on training
samples, the weights correspond to samples.

General greedy stagewise algorithm [33] can be described as
the following. For

(11)

and then

(12)

where denotes the loss function, and the occur-
rence of the constraint terms means that each kernel function is
selected once at most. The constraint guarantees that the effect
of some kernel function is not excessively magnified, which is
an effective mechanism for avoiding overfitting. On the other
hand, it causes our algorithm to only obtain an approximation
solution. This is not the case for the boosting algorithms, which
allow modifying the same parameter several times and actually
can converge to the minimum of their loss function.

BO et al.: TRAINING HM-SVMS USING GREEDY STAGEWISE ALGORITHM 1449

A key observation is that the solution for this two-variable
optimization problem in SVMs can be obtained in closed form.
For the loss function in SVMs, (11) can be formulated as

(13)

Eliminating the constant term in (13), we have

(14)

Define the gradient vector

if

if (15)

We can reformulate (14) as

(16)

Equation (16) can be solved in two steps. In the first step, we
fix and compute the minimal value of (16) with respect
to . In the second step, we compute by minimizing
with respect to , and then compute in terms of . Fixing

, we have the subproblem

(17)

Since (17) is a single variable quadratic programming, we can
give its analytical solution (see Fig. 1)

if

if
(18)

TABLE I
CHARACTERISTICS OF THE DATA SETS AND THE

VALUE OF KERNEL PARAMETER

According to the positive–definite property of kernel function,
we have . Thus, (18) can be further simplified as

if

if
(19)

Combining (17) and (19), we get

if

if
(20)

Considering (19) and (20), we can obtain the parameter pairs
by the following:

(21)

(22)

From (20), we can see that if each of unselected training samples
satisfies , the loss function (10) stops decreasing, so
GS-SVMs should terminate. Accordingly, the greedy stagewise
algorithm for SVMs is shown in algorithm 1.

Algorithm 1: GS-SVMs

1. Set , , , ,

, ;

2. For to , do:

3. If , stop;

4. , ;

5. , ;

6. ;

7. Update , according to (20);

8. ;

9. End For

10. End Algorithm

1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

TABLE II
COMPARISONS OF GS-SVMS AND LIBSVM 2.83. SV DENOTES THE NUMBER OF SUPPORT VECTORS; ERROR DENOTES THE MISCLASSIFICATION RATE (PERCENT);

K1 DENOTES THE NUMBER OF KERNEL FUNCTION EVALUATIONS WITH USING THE CACHE WITH EACH UNIT CORRESPONDING TO 10 KERNEL FUNCTION

EVALUATIONS; K2 DENOTES THE NUMBER OF KERNEL FUNCTION EVALUATIONS WITHOUT USING THE CACHE WITH EACH UNIT CORRESPONDING

TO 10 KERNEL FUNCTION EVALUATIONS; AND TIME DENOTES THE RUNTIME WITH EACH UNIT CORRESPONDING TO 1 s. REGULARIZATION

PARAMETER C IS SET TO BE 2 AND 4 FOR ADULT AND WEB DATA SETS, RESPECTIVELY

TABLE III
COMPARISONS OF GS-SVMS AND LIBSVM 2.83 FOR THE DIFFERENT REGULARIZATION PARAMETERS. THE DEFINITION OF K1, K2, AND TIME

IS THE SAME AS IN TABLE II

A special case is Gaussian kernel that satisfies ,
which allows us to simplify (20) as

if

if
(23)

According to SVMs, we call the samples corresponding to
nonzero weights as support vectors. It is easily checked that the
computational complexity of GS-SVMs is only , where
is the number of support vectors.

V. EXPERIMENTS

In this section, we investigate the properties of GS-SVMs
on various data sets and compare them with HM-SVMs
and soft-margin SVMs. Gaussian kernel

is used to construct classifiers. Soft-margin
SVMs are trained using LIBSVM 2.83 [35], which implements
the improved SMO algorithm. HM-SVMs are constructed using
MOSEK optimization toolbox, since SMO works inefficiently
for HM-SVMs. All the experiments are run on a personal
computer with 3.2-GHz P4 processors, 2-GB memory, and
Windows XP operation system. The size of the cache is set
to be 1 GB. The optimization process is terminated when the
maximal violation of the KKT conditions is within 0.001. For
fair comparison, GS-SVMs also use the sparse representation

of training samples as LIBSVM 2.83. The shrinking is used if
no further explanation is given.

A. Comparison With LIBSVM 2.83 on Adult and Web Data Sets

In order to validate the speed of GS-SVMs, we compare it
with LIBSVM 2.83 on Adult and Web data sets.1 The charac-
teristics of the data sets and the value of kernel parameter are de-
scribed in Table I. In the first experiment, we fix at a suitable
value, which gives good generalization performance. The re-
sults are shown in Table II as functions of the number of training
samples. In the second experiment, we vary over a wide range.
The results are shown in Table III as functions of

As we can see, the number of kernel evaluations of GS-SVMs
is smaller than that of LIBSVM 2.83 on the two data sets.
LIBSVM 2.83 benefits from the large cache size. Many ex-
pensive kernel evaluations are avoided since the entities of the
kernel matrix can be accessed from the cache when needed
again. However, for the large scale data sets, it is hopeless to
fit the larger part of the kernel matrix to the cache, because the
space requirement for the kernel matrix grows quadratically
with . We will illustrate this point in the next section.

From Tables II and III, GS-SVMs are consistently faster than
LIBSVM 2.83 on the two data sets, especially for the large

values where the runtime of LIBSVM 2.83 has a sharp in-
creasing. If grid search is used for the selection of free parame-
ters, the number of the trainings of GS-SVMs is significantly

1Available at http://research.microsoft.com~jplatt/

BO et al.: TRAINING HM-SVMS USING GREEDY STAGEWISE ALGORITHM 1451

TABLE IV
COMPARISONS OF GS-SVMS AND LIBSVM 2.83 ON FOREST DATA SET. THE DEFINITION OF SV, ERROR, K1, K2, AND TIME IS THE SAME AS IN TABLE II.

FOR K1 AND K2, EACH UNIT CORRESPONDS TO 10 KERNEL FUNCTION EVALUATIONS

TABLE V
COMPARISONS OF GS-SVMS AND OTHER EXISTING ALGORITHMS. SIZE

DENOTES THE NUMBER OF TRAINING SAMPLES. THE DEFINITION

OF SV, ERROR, AND TIME IS THE SAME AS IN TABLE II

fewer than that of SVMs since GS-SVMs do not require se-
lecting the regularization parameter. For example, if we try ten
different values for and and perform tenfold cross valida-
tion, then GS-SVMs only require retraining 100 times; how-
ever, SVMs do that 1000 times. Hence, the training speed of
GS-SVMs is significantly more times faster than that of SVMs.
Also, we can see that the test errors of GS-SVMs and LIBSVM
2.83 are very close. Thus, we have the conclusion that GS-SVMs
are significantly faster in speed than LIBSVM 2.83 and compa-
rable in generalization performance with LIBSVM 2.83.

B. Comparison With the Existing Algorithms
on Forest Data Set

To know the behavior of GS-SVMs on very large data sets,
we test the proposed algorithm on Forest data set [36]. The data
set contains 581 012 samples with seven classes. The dimen-
sion of samples is 54. We look only at the binary classification
problem of differentiating class 2 from the rest. We randomly
select 100 000 samples as the training set and 50 000 samples as
the test set.

To get good free parameters, we first choose two small sub-
sets: one for training and the other for validation. The parame-
ters are tuned on the validation set. Then, the parameters

and are obtained for SVMs and the pa-
rameter is obtained for GS-SVMs. This group
of data sets covers a wide range of kernel matrix size, which
fits into the cache by nearly 30% to only 1%; hence, in most
cases, we have to reevaluate the kernel function when some en-
tity of the kernel matrix is needed. Table IV shows the results
of GS-SVMs and LIBSVM 2.83 as functions of the number
of training samples. We can see that the generalization perfor-
mance of GS-SVMs and LIBSVM 2.83 is close, however the
training time of GS-SVMs is much less than that of LIBSVM
2.83. Note that the shrinking does not apply to Forest data set
since it increases the training time of LIBSVM 2.83.

Since different divisions of training and test sets are used in
the benchmark test, it is not easy to compare the performance of
the different algorithms fairly. Here, we give Collobert et al.’s

TABLE VI
CHARACTERISTICS OF BENCHMARK DATA SETS

[14] and Dong et al.’s [16] results for reference. Dong et al. ran-
domly divided the full data set into 435 756 training samples and
145 256 test samples. Then, they trained SVMs on some subsets
using the parallel techniques and uniformly combined the out-
puts of these SVMs to make a final decision. Dong et al.’s ex-
periments were conducted on a PC with single intel P4 1.7-GHz
processor with 256-k L2 (second-level) cache, SDRAM. The
total training time was about 6240 s. The test error was 10.4%
for class 2 and the rest. Collobert considered the same binary
classification. Their training and test sets consisted of 100 000
and 50 000 samples, respectively. The experiments were con-
ducted on the cluster with 50 Athlon 1.2-Ghz central processing
units (CPUs). The test error was about 9.3% for the hard mix-
ture of SVMs and the total training time was 2220 s. When the
size of the training set was increased to 400 000 and the local
experts were changed to multilayer perceptrons (MLPs), rather
than SVMs, the hard probability mixture of MLPs achieved
5.6% test error on the binary classification, and the training time
was 1020 s.

For comparison, we also run GS-SVMs and core vector
machines [19] on 400 000 training samples and the results are
shown in Table V. It is observed that GS-SVMs are very com-
petitive with the existing approximation algorithms. GS-SVMs
are comparable with CVM and superior to the other two
algorithms in terms of the generalization performance. The
runtime of Collobert et al.’s algorithm is less comparable with
the other three algorithms because it exploits the significantly
faster machine. The runtime of Collobert et al.’s algorithm

1452 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

TABLE VII
ERRORS OF GS-SVMS, HM-SVMS, AND SVMS ON BENCHMARK DATA SETS. THE RESULTS OF THE BEST METHOD AND OF ALL OTHER METHODS WITH NO

SIGNIFICANT DIFFERENCE (THE SIGNIFICANT LEVEL> 0:05) ARE SET IN BOLDFACE. NOTE THAT PAIRWISE TWO-TAILED t-TESTS

ARE NOT APPLIED OVER DNA, LETTER, SATIMAGE, AND SHUTTLE

should be less than the runtime reported in Table V if it was
run on our computer, but one should note that its generalization
performance is very poor.

C. Comparison With SVMs on More Benchmark Data Sets

In order to validate the generalization performance of
GS-SVMs, we compare to HM-SVMs, soft-margin SVMs
on 15 benchmark data sets from University of California at
Irvine (UCI) [37]. These data sets have been extensively used
in testing the performance of diversified kinds of learning
algorithms. This collection is a well-balanced mixture of the
learning tasks with different characteristics, which contains
problems with a few or with many training samples, with a few
or with many classes, with a few or with many features, and
with low or high noise. The characteristics of benchmark data
sets are given in Table VI. One-against-one method is used to
extend binary classifiers to multiclass classifiers.

For the data sets where the test samples may be available, the
error on the test samples is reported in Table VII. For the data
sets where the test samples may not be available, tenfold cross
validation is run and the average error of tenfold cross valida-
tion is reported in Table VII. For each training–test pair, tenfold
cross validation is performed on the training set for tuning-free
parameters. Before training, we scale all the training samples
into the interval , and then adjust the test samples using
the same linear transformation. The detailed experimental setup
is the following.

1) For soft-margin SVMs, kernel parameter and reg-
ularization parameter are chosen from intervals

and
. This range

is enough for our problems. The number of trainings
needed on each training–test pair is .

2) For GS-SVMs and HM-SVMs, kernel pa-
rameter is chosen from interval

. The number of
trainings needed on each training–test pair is

. This range is enough for these data sets.
Pairwise two-tailed -tests indicate that GS-SVMs are much

better than HM-SVMs on eight data sets, i.e., Australian,
German, Glass, Heart, Iris, Liver, Wine, and Diabetes. As for
the remaining data sets, GS-SVMs and HM-SVMs obtain the
similar performance. Pairwise two-tailed -tests also indicate
that GS-SVMs are much better than SVMs on Glass, and worse
than SVMs on Liver. As for the remaining data sets, GS-SVMs
and SVMs obtain the similar performance.

VI. WHY DOES GREEDY STAGEWISE ALGORITHM

FOR SVMS WORK?

Empirical study has shown that GS-SVMs work well on var-
ious data sets. In this section, we will further explore the reason
for the success of GS-SVMs. According to statistical learning
theory, the generalization performance of learning algorithms
not only depends on the empirical risk but also the Vapnik–Cher-
vonenkis (VC) dimension of the hypothesis space. If the VC di-
mension of the hypothesis space is too large, the empirical risk
minimization is possibly not consistent, i.e., the learning algo-
rithms with a small empirical risk may bring a large actual risk.

Chang and Lin [38] have shown that if a kernel function is
strictly positive definite, HM-SVMs have unique solution. In
other words, HM-SVMs with positive–definite kernel can com-
pletely separate the training samples with the presence of noise
or not. This means that the hypothesis space is too large and
HM-SVMs can suffer from overfitting. In order to obtain good
generalization performance, it is necessary to find a right bal-
ance between the empirical risk and the VC dimension of the
hypothesis space. By introducing a regularization term, soft-
margin SVMs can balance the empirical risk and the VC dimen-
sion of the hypothesis space and thus obtain the good general-
ization performance.

BO et al.: TRAINING HM-SVMS USING GREEDY STAGEWISE ALGORITHM 1453

Fig. 2. Training errors of GS-SVMs, RSVMs, SVMs, and HM-SVMs on seven data sets.

Fig. 3. Test errors of GS-SVMs, RSVMs, SVMs, and HM-SVMs on seven data sets.

GS-SVMs adjust the weights of the kernel functions one by
one. The weight of each kernel function centered on the training
samples is adjusted once at most, so GS-SVMs run iterations
at most. In fact, the early stopping rule can act as an implicit reg-
ularization term, and thus, it controls the capacity of hypothesis
space. Note that GS-SVMs usually do not give a good approxi-
mation solution for HM-SVMs.

The set of hyperplanes

(24)

is called the set of -margin separating hyperplanes if they clas-
sify vector as follows:

(25)

Note that classifications of vectors that fall into the margin
are undefined. For the set of -margin separating hy-

perplanes, the following theorem holds true.
Theorem 2 [39]: Let vectors belong to a sphere of

radius . Then, the set of -margin separating hyperplanes has
the VC dimension bounded by the inequality

(26)

It is well known that the VC dimension of the set of hyper-
planes is equal to , where is dimensionality of input space.
However, Theorem 2 shows the following: 1) the VC dimen-
sion of the set of -margin separating hyperplanes can be less
than ; and 2) we can control the VC dimension of the set

1454 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

of -margin separating hyperplanes by controlling , i.e., the
length of the weight vector .

The weight vector obtained by GS-SVMs is

(27)

where is the solution of GS-SVMs. Conse-
quently, the length of the weight vector is

(28)

This means that the separating hyperplane
constructed by GS-SVMs belongs to the set

. We can
look at as an implicit constraint for GS-SVMs.
If we put the constraint to a prior GS-SVM, the solution of
GS-SVMs does not change. The smaller is, the smaller
the capacity of becomes. If obtained by GS-SVMs
is suitable for the problems at hand, GS-SVMs can give
a good regularization parameter implicitly. However, one
should remember that the separating hyperplane constructed
by GS-SVMs usually is not the hyperplane that minimizes
the empirical risk. According to statistical learning theory,
the hyperplane minimizing the empirical risk is preferred for
the given capacity of hypothesis space. One can find such
hyperplane in by the following optimization problem:

(29)

Equation (29) also is called rigorous support vector machines
(RSVMs) by Bi and Vapnik [40]. The solutions of RSVMs and
SVMs coincide if the appropriate and are given. Thus,
if GS-SVMs can find a good approximate solution for RSVMs
with , we can explain why GS-SVMs obtain good gen-
eralization performance. We will show this by the following ex-
periments.

In Figs. 2 and 3, we give the training errors and test errors
of GS-SVMs, RSVMs, SVMs, and HM-SVMs. The kernel
parameter of RSVMs is set to the same as for GS-SVMs, and

in RSVMs is computed by the weight vector obtained by
GS-SVMs. Detailed experimental setup of GS-SVMs, SVMs,
and HM-SVMs is the same as in Section V. Note that the
training errors and test errors are the average of a tenfold cross
validation.

From Figs. 2 and 3, we can see that the test error of
HM-SVMs is significantly larger than its training error on each
data set; however, the test errors of GS-SVMs, RSVMs, and
soft-margin SVMs are close to their training errors on each
data set. This indicates that HM-SVMs suffer from overfitting;
however, GS-SVMs, RSVMs, and soft-margin SVMs avoid it.

From Figs. 2 and 3, we also can see that RSVMs with
obtain good generalization performance. This indi-

cates that the early stopping rule in GS-SVM can choose an

appropriate regularization parameter implicitly. On the other
hand, the training error of GS-SVMs is close to that of RSVMs
on seven data sets. This shows that GS-SVMs can find a good
approximate solution for RSVMs. Thus, we can explain the
reason for the success of GS-SVMs: 1) GS-SVMs can choose
an appropriate value of and by the early stopping rule;
and 2) GS-SVMs can find a good approximate solution for
RSVM with .

VII. CONCLUSION AND DISCUSSION

HM-SVMs have a risk of getting overfitting in the presence
of noise. To deal with this problem, this paper presents a greedy
stagewise algorithm for SVMs, named GS-SVMs, to train
HM-SVMs, which attempts to approximately train HM-SVMs
while avoiding overfitting. Extensive empirical comparisons
show that GS-SVMs are superior to HM-SVMs and comparable
with soft-margin SVMs in generalization performance. On the
other hand, GS-SVMs also obtain an impressive speedup
relative to soft- and hard-margin SVMs; hence, they are very
suitable for large scale problems. To explore the reason for
the success of GS-SVMs, statistical learning theory is utilized
to analyze the empirical results. It seems that the success of
GS-SVMs lies in that the early stopping rule in GS-SVMs can
act as an implicit regularization term.

Note that although our algorithm is derived under the con-
dition that the kernel function is positive definite, GS-SVMs
can also be extended to the nonpositive–definite kernel function.
Hence, future work also includes exploring the performance of
GS-SVMs using the nonpositive–definite kernel functions.

REFERENCES

[1] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proc. 4th Annu. ACM Workshop Comput. Learn.
Theory, Pittsburgh, PA, 1992, pp. 144–152.

[2] S. S. Keerthi and C. J. Lin, “Asymptotic behaviors of support vector ma-
chines with Gaussian kernel,” Neural Comput., vol. 15, pp. 1667–1689,
2003.

[3] C. Cortes and V. Vapnik, “Support vector networks,” Mach. Learn.,
vol. 20, pp. 273–297, 1995.

[4] B. Schölkpof, A. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural Comput., vol. 12, pp. 1207–1245,
2000.

[5] M. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[6] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:
An application to face detection,” in Proc. Conf. Comput. Vis. Pattern
Recognit., 1997, pp. 130–136.

[7] T. Joachims, “Making large-scale SVM learning practical,” in Ad-
vances in Kernel Methods-Support Vector learning. Cambridge,
MA: MIT Press, 1999, pp. 169–184.

[8] J. Platt, “Fast training of support vector machines using sequential min-
imal optimization,” in Advances in Kernel Methods — Support Vector
Learning. Cambridge, MA: MIT Press, 1999, pp. 185–208.

[9] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to Platt’s SMO algorithm for SVM classifier design,”
Neural Comput., vol. 13, pp. 637–649, 2001.

[10] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to the SMO algorithm for SVM regression,” IEEE
Trans. Neural Netw., vol. 11, no. 5, pp. 1188–1194, Sep. 2000.

[11] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regulariza-
tion path for the support vector machine,” J. Mach. Learn. Res., vol. 5,
pp. 1391–1415, 2004.

[12] T. T. Friess, N. Cristianini, and C. Campbell, “The kernel-adatron al-
gorithm: A fast simple learning procedure for support vector machine,”
in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 188–196.

BO et al.: TRAINING HM-SVMS USING GREEDY STAGEWISE ALGORITHM 1455

[13] S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty, “SimpleSVM,”
in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 760–767.

[14] R. Collobert and S. Bengio, “SVMTorch: Support vector machines
for large-scale regression problems,” J. Mach. Learn. Res., vol. 1, pp.
143–160, 2001.

[15] R. Collobert, S. Bengio, and Y. Bengio, “Scaling large learning prob-
lems with hard parallel mixtures,” in Int. J. Pattern Recognit. Artif. In-
tell., 2003, vol. 17, pp. 349–365.

[16] J. X. Dong, A. Krzyzak, and C. Y. Suen, “Fast SVM training algorithm
with decomposition on very large data sets,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 4, pp. 603–618, Apr. 2005.

[17] G. Bakir, L. Bottou, and J. Weston, “Breaking SVM complexity with
cross training,” in Proc. 17th Neural Inf. Process. Syst. Conf., 2005, pp.
81–88.

[18] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classi-
fiers with online and active learning,” J. Mach. Learn. Res., vol. 6, pp.
1579–1619, 2005.

[19] I. W. Tsang, J. T. Kwok, and P. M. Cheung, “Core vector machines:
Fast SVM training on very large datasets,” J. Mach. Learn. Res., vol.
6, pp. 363–392, 2005.

[20] S. S. Keerthi, O. Chapelle, and D. Decoste, “Building support vector
machines with reduced classifier complexity,” J. Mach. Learn. Res.,
vol. 7, pp. 1493–1515, 2006.

[21] L. F. Bo, L. Wang, and L. C. Jiao, “Training support vector machines
using greedy stagewise algorithm,” in Proc. 9th Pacific-Asian Conf.
Knowl. Disc. Data Dinning, Hanoi, Vietnam, 2005, pp. 632–638.

[22] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[23] V. Vapnik, Statistical Learning Theory. New York: Wiley-Inter-
science, 1998.

[24] N. Aronszajn, “Theory of reproducting kernels,” Trans. Amer. Math.
Soc, vol. 686, pp. 337–404, 1950.

[25] F. Girosi, “An equivalence between sparse approximation and support
vector machines,” Neural Comput., vol. 10, pp. 1455–1480, 1998.

[26] S. Chen, F. Cowan, and P. Grant, “Orthogonal least squares learning al-
gorithm for radial basis function networks,” IEEE Trans. Neural Netw.,
vol. 2, no. 2, pp. 302–309, Mar. 1991.

[27] P. Vincent and Y. Bengio, “Kernel matching pursuits,” Mach. Learn.,
vol. 48, pp. 165–187, 2002.

[28] L. C. Jiao, L. F. Bo, and L. Wang, “Fast sparse approximation for least
square support vector machines,” IEEE Trans. Neural Netw., vol. 18,
no. 3, pp. 685–697, May 2007.

[29] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictio-
naries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
Dec. 1993.

[30] Y. Freund, “Boosting a weak learning algorithm by majority,” Inf.
Comput., vol. 121, pp. 256–285, 1995.

[31] J. H. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regres-
sion: A statistical view of boosting,” Ann. Statist., vol. 28, pp. 337–407,
2000.

[32] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems. Cambridge, MA: MIT Press, 2000, vol. 12, pp. 512–518.

[33] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[34] Y. Singer, “Leveraged vector machines,” in Proc. 12th Neural Inf.
Process. Syst. Conf., 2000, pp. 610–616.

[35] R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection using
second order information for training support vector machines,” J.
Mach. Learn. Res., vol. 6, pp. 1889–1918, 2005.

[36] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial
neural networks and discriminant analysis in predicting forest cover
types from cartographic variables,” Comput. Electron. Agriculture, vol.
24, pp. 131–151, 1999.

[37] C. L. Blake and C. J. Merz, UCI Repository of Machine Learning
Databases, 1998 [Online]. Available: http://www.ics.uci.edu/~mlearn/
MLRepository.html

[38] C. C. Chang and C. J. Lin, “Training v-support vector classifiers:
Theory and algorithms,” Neural Comput., vol. 3, pp. 2119–2147, 2001.

[39] V. Vapnik, “An overview of statistical learning theory,” IEEE Trans.
Neural Netw., vol. 10, no. 5, pp. 988–999, Sep. 1999.

[40] J. B. Bi and V. Vapnik, “Learning with rigorous support vector ma-
chines,” in Proc. 16th Annu. Conf. Learn. Theory, 2003, pp. 243–257.

Liefeng Bo (M’08) was born in Xi’an, China, on Feb-
ruary 18, 1978. He received the B.S. degree from Xi-
dian University, Xi’an, China, in 2002 and the Ph.D.
degree in circuits and systems from Institute of Intel-
ligent Information Processing, Xidian University, in
2007, .

Currently, he is a Postdoctoral Scholar, collabo-
rating with Prof. Dr. C. Sminchisescuin, at Toyota
Technological Institute at Chicago (TTI-C). He is
with the Key Laboratory of Intelligent Perception
and Image Understanding of Ministry of Education

of China, Institute of Intelligent Information Processing, Xidian University. He
has published several papers in some leading journals such as Neural Com-
putation and the IEEE TRANSACTIONS ON NEURAL NETWORKS. His current
research interests include large scale optimization algorithms and probabilistic
models, kernel-based machine, human modeling, and recognition.

Ling Wang was born in Xi’an, China, on November
10, 1978. She received the B.S. degree from the
School of Science and the M.S. degree in computer
science from Xidian University, Xi’an, China,
in 2001 and 2005, respectively. She is currently
working towards the Ph.D. degree in circuits and
systems from the Institute of Intelligent Information
Processing, Xidian University.

Her current research interests include pattern
recognition, statistical machine learning, and image
processing.

Licheng Jiao (SM’89) was born in Shaanxi, China,
on October 15, 1959. He received the B.S. degree
from Shanghai Jiaotong University, Shanghai, China,
in 1982, and the M.S. and Ph.D. degrees from Xi’an
Jiaotong University, Xi’an, China, in 1984 and 1990,
respectively, all in electronical engineering.

He is the author or coauthor of more than 150 sci-
entific papers. His current research interests include
signal and image processing, nonlinear circuit and
systems theory, learning theory and algorithms, opti-
mization problems, wavelet theory, and data mining.

