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ABSTRACT

This paper describes an array-based language-level approach
to parallel sparse computation. Qur approach is unique due
to its separation of sparse index sets from arrays, both syn-
tactically and in the implementation. This design allows
users to express their computation using dense array syn-
tax, making the code easier for readers to understand and
for compilers to parallelize and optimize. This work is done
within the context of Advanced ZPL, retaining its crisp syn-
tax and source-level performance model. Qur implementa-
tion uses a novel sparse storage format that supports general
operations such as arbitrary iteration and slicing. We de-
scribe how our compiler automatically optimizes this data
structure into more compact forms based on the operations
required by the program. We demonstrate our approach
using the NAS CG and MG benchmarks, comparing our
implementations with the original Fortran+MPI versions in
terms of clarity and performance. We present performance
results on the Cray T3E indicating that our implementa-
tion compares favorably to the hand-coded NAS versions in
terms of memory requirements and often surpasses them in
terms of execution speed.
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Figure 1: A sample sparse array in which d = 2,
n =6, nnz =7, and the IRV is 0.

1. INTRODUCTION

The sparse array is a fundamental data structure in sci-
entific computing due to the pervasiveness of sparsity in
the universe and the models that scientists use to represent
aspects of it. Sparse arrays are commonly used to repre-
sent sparse matrices, which have innumerable applications
in mathematics, engineering, and the sciences. Sparse arrays
can also represent structural sparsity such as the placement
of particles in space or of coastlines on the earth’s surface.
Furthermore, sparse iteration may be used with traditional
dense arrays in order to focus on particular values of interest.

Since sparse scientific applications typically have high com-
putational demands, it is often desirable to apply parallelism
to them in order to employ memory and cycles beyond that
which typical uniprocessors can provide. In this paper we
present a novel approach to portable parallel sparse compu-
tation that provides a combination of clarity, performance,
and semantic richness not present in other approaches. This
work is done within the context of the Advanced ZPL (A-
ZPL) parallel programming language, which is under devel-
opment at the University of Washington and freely available
on the web'.

For this paper, we consider a sparse array to be an array
of arbitrary dimension d, in which a single value appears
sufficiently frequently that it benefits the user to store just
a single copy of it (along with any values that differ). This
implicitly replicated value (IRV) is often 0, but can take
on any value in practice. Typically, sparse arrays are used
when the number of explicitly stored values, nnz, is asymp-
totically less than the number of values represented by the
array (e.g. nnz = o(n?), where n is the number of elements
per dimension?®). Figure 1 illustrates a sample sparse array.

"http:/ /www.cs.washington.edu /research/zpl
%In practice each dimension can have a different number of



Challenges to Parallel Sparse Computation

Two of the primary challenges to providing reasonable facil-
ities for sparse computation are clarity and performance.
Performing sparse computation in parallel presents addi-
tional obstacles. In the following paragraphs, we consider
several of these challenges in turn.

Conceptually, sparse arrays are no different than normal ar-
rays; they represent a dense set of values, but use a nontradi-
tional manner to do so. Most programming languages have
no built-in support for sparse arrays, forcing users to imple-
ment their own sparse array representations by hand. This
results in the obfuscation of conceptually simple operations,
garbling the code’s intent.

A prime example of this obfuscation can be found in the
sparse matrix-vector multiplications of the NAS CG bench-
mark [2]. Conceptually, matrix-vector multiplication is sim-
ple, represented densely as follows:

do j = 1,numrows
sum = 0.d0
do k = 1,numcols
sum = sum + a(j,k)*p(k)
enddo
w(j) = sum
enddo

However, since the matrix in NAS CG is sparse and Fortran
doesn’t provide support for sparse arrays, the benchmark’s
implementors represent it using a hand-coded compressed
sparse row (CSR) storage format [23]. This format requires
modifying the dense code above as follows:

do j = 1,numrows
sum = 0.d0
do k = rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))
enddo
w(j) = sum
enddo

The result is a code fragment that fails to reflect the logical
operation being performed and obfuscates it to the point
that it is difficult to recognize.

Performance represents another challenge to effective sparse
computation. The use of the CSR format in the example
above disguises the code’s intent not only for human readers,
but also for the compiler. In particular, the code uses indez
arrays—arrays which act as indices for other arrays. Index
arrays obscure data dependences and are a notorious obsta-
cle for compiler analysis and automatic parallelization [25,
7]. Although many compiler techniques have been developed
to combat this problem, a breakdown in communication has
occurred: the language has failed to communicate the pro-
grammer’s intent to the compiler as clearly as it could. For
example, CSR guarantees certain useful properties about
the rowstr and colidx arrays used above, but the compiler
has no way of detecting these properties by analyzing the
code.

elements n;, but for simplicity in this discussion we assume
that they are all equal.

Performing sparse computations in parallel presents a num-
ber of additional challenges. Dividing the computation be-
tween a number of processors may not prove terribly difficult
(the code above only requires changing the upper bound of
the outer loop to lastrow-firstrow+l), but the code re-
quired to implement data transfer and synchronization be-
tween processors is lengthy, tedious, and complex. Even sim-
ple dense parallel array operations such as boundary value
updates become significantly more complicated in the sparse
context.

Writing portable parallel sparse codes that perform well can
be done—the NAS CG benchmark is one such example.
However, this is achieved only through great programmer
care, and the result is often an extremely brittle piece of
code. For example, if we were to extend NAS CG in a way
that required efficient iteration over sparse matrix columns
as well as rows, an immense amount of code would have to
be reformulated and rewritten.

All of these issues—clarity, performance, parallel implemen-
tation, and flexibility—call out for a language-based solu-
tion. In particular, they motivate a language that provides
a high-level, global means of specifying sparse computation
using syntax which resembles the equivalent dense compu-
tation. This syntax should be clear to the programmer as
well as the compiler and should result in an efficient paral-
lel implementation. This paper describes work in which we
strive to achieve these goals.

Our Work

ZPL is an array-based parallel programming language that
has shown promise in its ability to support clean, concise
code without sacrificing portability or performance [9]. The
key to this success has been its use of the region as its ba-
sis for computation. Regions are language-level index sets
used to declare arrays and specify parallel computation, and
they provide numerous benefits to both the programmer and
compiler [10, 8]. In this paper we extend the traditional re-
gion concept to support parallel sparse computation while
preserving ZPL’s benefits. The work in this paper is done
within the context of ZPL’s successor language, A-ZPL.

This paper constitutes the first published work that de-
scribes A-ZPL’s support for sparse computation. As such,
its contributions include:

a detailed description of sparse regions

e code excerpts showing the use of sparse regions in the
NAS CG and MG benchmarks

e a discussion of our compiler’s implementation of sparse
regions and arrays

e experimental results comparing the memory require-
ments and execution times of sparse A-ZPL implemen-
tations of CG and MG with the hand-coded NAS im-
plementations

e a discussion of optimizations and future optimization
opportunities



The rest of this paper is organized as follows. In the next
section we give a brief overview of other techniques for sparse
scientific computation. Section 3 gives a brief description of
traditional ZPL regions and their benefits. Section 4 ex-
plains how sparse regions are used in A-ZPL, showing their
application in the NAS CG and MG benchmarks. Section 5
describes the implementation of sparse regions and arrays in
the A-ZPL compiler and explains our strategy for optimiz-
ing their memory requirements. Section 6 gives experimen-
tal results using the NAS CG and MG benchmarks. Finally
in Section 7 we draw conclusions and sketch out our future
work.

2. RELATED WORK

The past few decades have seen a considerable amount of re-
search and development in the area of sparse computation.
The vast majority of this work has involved the development
of library support for sparse matrix computations [24, 27,
20, 19, 18]. Each of these systems exports a set of highly-
tuned sparse matrix operations to the user via a custom li-
brary interface. These interfaces are subject to the standard
tradeoffs: they can be small and extremely special-purpose
or they can be general but “wide,” either in terms of the
number of routines exported or the number of parameters
that their routines require [16]. In contrast, our approach
is a language-based solution. It provides users with a small
set of general operators that can be used to build sparse
array codes (of which sparse matrices are but a subset). In
doing so, we make the standard tradeoffs between libraries
and languages: A-ZPL is unlikely to outperform a specific
isolated library operation, yet its generality allows users to
solve a larger set of problems, and the compiler can perform
optimizations that span consecutive operations.

Although other parallel languages such as NESL [5] and
HPF [17] have supported sparse matrix computations [6,
14], they have required users to implement their own spar-
sity structures by hand as in our introductory Fortran ex-
ample. This results in the same obstacles to clarity and
performance seen in that example. To aid with the perfor-
mance problem, Ujaldon et al. have proposed extensions to
HPF which provide language support for declaring sparse
matrices using a variety of storage schemes [28]. This ap-
proach solves the problem of communicating to the compiler
that a sparse matrix is being used. However, it still requires
users to refer explicitly to the underlying sparse matrix rep-
resentation rather than allowing them to use a traditional
dense array syntax as in our work.

One approach that addresses this problem is a compiler
technique by Bik and Wijshoff [4, 3] in which dense ma-
trix programs are automatically transformed into an equiv-
alent sparse program. The compiler automatically selects
an appropriate sparse format depending on the placement
of the non-zeroes. More recently, the Bernoulli compiler
group has developed a technique which also allows users to
specify sparse matrix operations using traditional dense syn-
tax. In their approach, the compiler uses a form of generic
programming to implement the code using a programmer-
specified sparse matrix implementation [1, 21]. Our work
shares the goals of both of these projects, but takes a dif-
ferent approach by using an array-based syntax and having
the compiler automatically generate a sparse array represen-

tation optimized according to the operations applied to the
sparse array rather than its structure. In doing so, we do
not expect to compete with matrix representations that are
highly specialized to a particular application, but do hope to
support a broader class of sparse codes at a high level. Our
approach also differs in that it supports higher-dimensional
sparse arrays (rather than simply 2D matrices), and uses a
unique optimizable sparse array representation.

One other language-based approach that deserves mention is
Matlab [22], which supports seamless interactions between
sparse and dense matrices [15]. The philosophy of our ap-
proach is very much like Matlab’s, since we also seek to ex-
press sparse computation using a high-level array-based syn-
tax. However, our application contexts are quite different in
that Matlab is interpreted, sequential, and matrix-oriented
whereas A-ZPL is compiled, parallel, and array-based.

3. INTRODUCTION TO REGIONS

This section provides a brief introduction to regions as well
as other ZPL concepts used in this paper. For a more com-
plete introduction, please refer to the literature [10, 26].

3.1 Regions

Regions are fundamental to ZPL’s clean syntax, its perfor-
mance model, and its efficient implementation. Regions are
conceptually simple: they are user-defined index sets that
can be named and manipulated using high-level operations.
For example, the following lines of code create and name
two regions:

region R = [1..n,1..n];
R2 = R by [2,2];

The first line declares an n x n region R. The second creates
a new region R2 that is the same size as the original, but
strided by 2 in each dimension.

Regions have two uses in ZPL. The first is to declare ar-
rays. For example, the following lines declare two arrays of
integers over each of the previous regions:

var A , B : [R] integer;
A2, B2: [R2] integer;

The second use of regions is to provide indices for ZPL’s
array expressions. For example, consider the following code
fragment:

[R] A := 0;
[R2] begin
A := Indexl;
A2 := 2%4;
end ;
[R]1 B2 := 0; --illegal!!

The first statement assigns the value 0 to elements of A.
Since it is preceded by the region scope R, all elements of A
will be initialized to 0. The next line opens a new region
scope R2, which specifies indices for the two statements that
it encloses. Thus, the next assignment to A modifies only
those values whose indices are specified by R2—those whose
row and column indices are odd. These values are set using
the implicit array Index1, whose values equal their indices
in the first dimension. The next statement replaces each



Simple Assignment

ZPL: [R] A := B; [1..n,1] B :=
. do i = 1,n
do i = i,n B(i,1) = 0
doj =1, n do j=1,n
F77: ACi,j) = B(i,j) 1T
B(i,1) =
enddo
ddo enddo
en enddo

Partial reduction

Transpose

+<<[R] 4; [R] A := B#[Index2,Indexl];
do i = 1,n
do j = 1,n
. A A(i,j) = B(j,i)
B(i,1) + A(i,j) enddo
enddo

Figure 2: An example of the way in which regions emphasize different array access styles. In ZPL the three
statements look quite distinct, alerting the programmer to the differences in their parallel implementations.
By contrast, the statements appear much less distinct in Fortran.

value of A2 with twice its corresponding value in A. Note
that the final assignment is illegal because it refers to B2
using indices not included in its defining region R2.

3.2 Array Operators

ZPL provides a number of array operators to describe array
computations that are not simply elementwise in nature.
These array operators modify the indices of the enclosing
region scope for their array arguments. A simple example
is the reduction operator which collapses one or more array
dimensions. For example, the following code sums the values
in each row of A4 and stores the result in the first column of
array B:

[1..n,1] B := +<<[R] A;

The outer region scope [1..n,1] provides indices for the
assignment to B in the usual manner. The reference to A
is modified using the reduction operator +<< and a second
region scope, [R]. In the context of the outer region scope,
this specifies that all the values in A should be reduced to a
single column using addition across the rows.

As a second example, the remap operator can be used to ar-
bitrarily gather and scatter values of an array. For example,
the following statement assigns the transpose of array 4 to
array B:

[R] B := A#[Index2,Indexl];

The remap operator specifies that an array reference should
be evaluated using the provided array arguments as index
arrays. In scalar terms, the statement above is equivalent
to:

forall i,j in R do
B(i,j) = A(Index2(i,j),Index1(i,j))
-- which equals A(j,1)

3.3 Benefitsof Regions

Regions provide several benefits to the user. The first is syn-
tactic. Regions have the effect of factoring the indices that
describe a computation away from the array references and
into an enclosing scope. This eliminates redundancy that
occurs in traditional array indexing and slicing notations.
Furthermore, the use of array operators serves to emphasize
differences in the way that arrays are accessed. As an ex-
ample, consider the ZPL statements in Figure 2 and their

equivalent Fortran loop nests. In Fortran the operations
look reasonably similar, though they are quite different in
nature.

This last point may seem superficial, but it is crucial in the
context of parallel computing. When arrays are distributed
across the local memories of a processor set, their reference
patterns have a critical impact on performance. ZPL’s use of
different operators to signify different array access patterns
allows users to evaluate their programs’ parallel implemen-
tation simply by looking at the source code [8]. For exam-
ple, ZPL programmers know that the first statement in Fig-
ure 2 will execute completely in parallel. Furthermore, they
know that the assignment involving the reduction operator
requires vector reductions across the processor rows and that
the assignment which uses the remap operator could poten-
tially result in an all-to-all communication. In contrast, the
syntactic similarity of these operations in Fortran disguises
the fact that their parallel implementations might be vastly
different.

This syntactic similarity causes potential confusion not only
for the programmer, but also for the compiler since it must
decipher the array references and loop bounds to determine
the user’s intent before generating optimized parallel code.
In contrast, regions enable ZPL compilers to understand ex-
actly what the programmer has requested, allowing com-
piler writers to concentrate on more interesting optimiza-
tions than simply locating and classifying a code’s paral-
lelism. The final benefit of the region is therefore its role in
generating efficient parallel code.

3.4 Flood Dimensions

Interactions between parallel arrays of different dimensions
(e.g. vectors and matrices) are expensive when the arrays’
distributions are not properly aligned. To circumvent this
problem, ZPL programmers typically use higher-dimensional
arrays which are flooded in one or more dimensions to indi-
cate their distribution in the higher-dimensional space. For
example, the following code declares flood regions that are
aligned with the rows and columns of the full 2D region R:

region R = [1..n,1..n];
Row = [ * ,1..mn];
Col = [1..n, * 1;



region Diag = Tri where (Indexl = Index2);
Rs = R where Pattern;
Rs2 = R
Rs3 = R where read(infile);
Rs4 = R where 7;

-- limit Tri to <ts main diagonal
-- Pattitern is a boolean array

where foo(Indexl,Index2); -- foo(z,3j) returns true/false

-- read pattern from a file
-- dynamic sparsity patiern that
-- will be computed in code body

Figure 3: Various styles of sparse region declarations. Note that the base region may either be sparse or dense
and that the boolean expression may be an array, a promoted scalar function, file I/O, or left unspecified

until runtime.

These flood dimensions are conformable to any index in that
dimension, allowing them to interact naturally with tradi-
tional arrays. Note that these declarations differ from a
“flat” dimension like [1,1..n] since flat dimensions are not
conformable with arbitrary indices and therefore could not
be read within the context of region R. Flood arrays are
implemented by replicating their defining values across the
appropriate dimensions of the logical processor grid. For
more details about flood dimensions and their implementa-
tion, refer to the literature [12].

3.5 DenseMatrix-V ector Multiply

Let us return now to our introductory example of dense
matrix-vector multiplication. Using the flood regions of the
previous section, a dense matrix-vector multiplication can
be written in ZPL as follows:

var A: [R] double;

P, Q: [Row] double;

W: [Col] double;
[Col]l W := +<<[R] (A #* P);
[Row] Q W#[Index2,Index1];

The reduction operator performs the actual matrix-vector
multiplication, storing the result in the column array W. We
then use a remap operator to transpose the result back into
a row for use in subsequent operations.

ZPL’s performance model tells the programmer that running
this code on a 2D grid of processors will require a reduction
across processor rows to perform the multiplication and all-
to-all style communication to implement the vector trans-
pose. It also indicates that when the number of processor
columns is set to 1, the reduction will be completely local,
but all Row computations will be performed redundantly on
all processors. Dually, if the number of processor rows is
set to 1, no redundant vector computation will take place,
but the reductions will involve vectors of size n. ZPL pro-
grammers can weigh these tradeoffs or simply try different
processor grid topologies at runtime. In the following sec-
tion, we will see how the sparse version of this code would
be written in A-ZPL.

4. SPARSE REGIONS

4.1 Motivation

One of the chief limitations to ZPL’s regions is that they
must be rectangular and regular (though possibly strided).
ZPL provides the ability to select a subset of a region’s in-
dices using a boolean mask, but this concept costs n in

both storage and iteration, regardless of the mask’s density.
For many applications, such as red-black SOR, this may be
completely reasonable. However, for others in which the
number of indices is o(n?), masks require excessive memory
and execution time.

The goal of this work is to extend regions to efficiently sup-
port general sparse index sets in A-ZPL without sacrificing
the benefits of traditional ZPL regions. In particular, the
syntax should remain crisp, the parallel overheads should
remain apparent to the user, and the time and space re-
quirements should be proportional to the number of indices
represented. The rest of this section describes the syntax
used to represent sparse regions and shows its use in some
sample applications.

4.2 SparseRegionDeclarations

A-7ZPL programmers declare sparse regions by modifying a
traditional region with a boolean expression that describes
the sparsity pattern. For example:

region Tri = [1..n,1..n] where
(abs(Index1-Index2) < 2);

This declaration bounds Rs to an n X n index set, but re-
stricts it to those locations whose row and column indices
differ by no more than 1. Thus, this declaration creates a
tridiagonal region.

Sparsity patterns need not be statically defined as in this
first example. Moreover, the base region itself may be sparse.
Figure 3 shows a variety of different sparse region declara-
tions. Each declaration is evaluated at runtime by iterating
over the base region and using a sparse representation to
store those indices where the defining expression evaluates
to “true.”

A-ZPL programmers declare sparse arrays in the traditional
manner, using sparse regions to define their size:

var As, Bs: [Rs] integer;

This declaration causes each processor to allocate a dense
vector of memory for As and Bs whose size is equal to the
number of indices in Rs that it owns, plus one additional
value to represent the IRV. See Figure 6a for an illustra-
tion. Note that A-ZPL associates sparse representations
with regions at runtime rather than with arrays. This allows
the space and time required to store and iterate over sparse
representations to be amortized across multiple arrays that
share the same sparsity pattern.
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[Rl A := Bs; [R] Bs := A

Figure 4: A variety of sparse/dense assignments. Assume that R and A are dense, and that Rs and Bs are
sparse. Note that sparse reads and writes of both arrays are legal, referring only to the elements in the
sparsity pattern. Dense reads of sparse arrays are also legal—the IRV is used for values that are not in the
sparsity pattern. However, a dense write to a sparse array is not legal due to the fact that a unique memory
location is not allocated for each index. These examples extend in the obvious way to statements which refer

to multiple sparsity patterns.

4.3 Using SparseRegions

Sparse regions concisely support a rich variety of semantics.
As a brief example, consider the assignments in Figure 4.
In the first two assignments, the controlling region is sparse.
The effect is that references to dense array A only read or
write those values indicated by Rs. When Bs is referenced,

all of its values are accessed since its sparsity pattern is
defined by Rs.

The third assignment illustrates a dense read of a sparse
array. In this statement, all values of A will be written even
though Bs is sparse. This is because Bs logically represents
a full n x n array of values. Thus, when reading an index
in R — Rs, the IRV of Bs will be referenced, causing all
of A’s values to be assigned. Note that this statement will
take QO(n?) time as compared to the first statement which,
though similar, requires only O(|Rs|) time.

The last assignment is illegal for reasons similar to the one
in Section 3.1: it attempts to store values in As for which
no storage has been allocated.

Although these examples are quite simple, they illustrate
the basic rules of reading and writing sparse and dense ar-
rays in the context of a sparse or dense region. These same
principles naturally extend to statements which mix sparsity
patterns. Furthermore, the traditional ZPL array operators
extend to sparse regions and arrays in the natural manner.
To understand the elegance of this approach, one only needs
to consider how a detailed sparse array operation like the
following would look in a traditional language:

[1..n,1] A := As#[1,Indexl1] +
+<<[Rs] (Bs * Di);
-- Di <5 declared over Diag

4.4 Benchmark Examples
At this point, we turn our attention to two real-world ex-
amples that will form the basis of our experiments: the
NAS CG and MG benchmarks [2].

NASCG

Consider the changes required to convert the dense ZPL
matrix-vector multiplication from Section 3.5 to a sparse
format. The changes to the declarations are simple: a sparse
region needs to be declared to specify matrix A’s sparsity
pattern:

region RS = R where ...;
var A:[RS] double;

The Row and Col regions could also be made sparse if it
seemed worthwhile. However, the properties of matrix A
in NAS CG are such that all vectors will be dense, and
therefore we choose to retain the dense format.

No change is required to the computation itself since A can
be read within the context of R in spite of the fact that it
is sparse. However, the savvy programmer will realize that
performing A * P within the context of R will require O(n?)
multiplication whereas the sparsity pattern of A is o(n?).
This represents a lot of wasted computation, so we change
the region controlling the multiplication to Rs:

[Col]l W := +<<[RS] (A * P);
[Row] Q := W#[Index2,Indexl];

Note that the logical expression of the matrix-vector mul-
tiplication remains the same as in the dense case. This is
in sharp contrast to the Fortran version in the introduction.
The A-ZPL user continues using traditional ZPL operations,
allowing the compiler to manage all of the details required
to change this parallel computation from dense to sparse.

NASMG

The NAS MG benchmark solves a discrete Poisson prob-
lem using the multigrid method. By most standards, it is
considered a dense computation, using a series of 27-point
stencils on a hierarchical array to achieve its result. How-
ever, it turns out that the input to the NAS MG benchmark
is extremely sparse. It consists of ten positive and ten nega-
tive charges stored at the finest discretization of the problem
space. For the class C version of the benchmark, this im-
plies that only 20 of the 512 elements in the input array
are nonzero—15 millionths of a percent! This application
demonstrates the use of sparse arrays to represent structural
sparsity rather than a sparse matrix.

If this input array was used only at the outset of the pro-
gram, the drawbacks to using a dense representation would
be minimal since its storage could simply be deallocated or
reused to avoid wasting memory. However, the MG bench-
mark actually computes two residual stencils against the
input array every iteration, which require walking across its
entire memory footprint to find the 20 values that are of in-
terest. It therefore seems that using a sparse format for the
input would be worthwhile. NAS MG programmers have
traditionally not done so, presumably due to the effort that
changing the dense array into a sparse one would require.
In A-ZPL the change is minimal and therefore worthwhile.



CG Line Counts

700
8 600 Ocommunication||
8 M declarations
5 500 280 E computation
2]
2 400
£
2
S 200 A
3
= 100
& 3 I 37

0
F77+MPI A-ZPL

(a)

Productive Lines of Code

MG Line Counts

1000
O communication
800 B declarations
587 @ computation
600
200
0
F77+MPI A-ZPL

(b)

Figure 5: These graphs indicate the number of productive lines of code required to implement the two
benchmarks in each language. Each line is classified as being communication, declarations, or computation.
Initialization, I/O, and timings are omitted from the analysis. The F774+MPI codes are the original NAS
benchmarks. The A-ZPL codes are our sparse versions of the benchmarks.

Here is the code from our dense ZPL implementation [9]
that refers to the input array V:

region RBase = [1..n,1..n,1..n];

var V:[RBase] double;

procedure resid(R,V,U:[,,] double);
begin

R =V +
end ;

-- 27-point stencil on U;

The resid() procedure is used not only for the input array,
but also for all levels of the hierarchical arrays. Therefore,
the regions defining the computational range and the sizes
of R, V, and U are all inherited from the callsite.

To change the input array into a sparse format, one need
simply modify the declarations as follows:

region RS = RBase where ...;

var V:[RS] double;

The A-ZPL compiler must then automatically create two
versions of resid(): the traditional dense version for use
within the hierarchy, and a second for use when parameter
V is sparse.

As in NAS CG, the savvy programmer would realize that
this code could be improved. In particular, V is referenced
over the full n® problem space in spite of the fact that only
20 of its values are nonzero when it is sparse. Therefore, the
programmer may choose to write a specialized version of the
procedure that eliminates this useless computation:

procedure residSps(R,V,U:[,,] double);
begin
R := ... -- 27-point stencil of U;
[RS] R += V;
end ;

This modification requires the programmer to create two
copies of resid(), but the change is fairly trivial as com-
pared to implementing the sparsity by hand. In future work,

we intend to have the compiler recognize such opportunities
for optimization and perform them automatically.

4.5 Evaluation of Clarity

Figure 5 indicates the number of lines required to implement
CG and MG in A-ZPL as compared to the NAS F77+MPI
implementations. More than half of the F77+MPI lines are
devoted to handling parallel communication and data dis-
tribution issues by hand. This code is tedious and error-
prone. In contrast, the A-ZPL compiler handles these details
automatically, resulting in cleaner, clearer implementations
of the benchmarks. A-ZPL’s region-based syntax also con-
tributes greatly to its succinct representation of the bench-
mark. While we do not have permission to reproduce long
excerpts from the NAS benchmark, we encourage readers to
download the codes and confirm for themselves that these
line counts reflect the relative readability of the benchmarks.

It is reasonable to wonder whether rewriting the NAS bench-
marks in Fortran 90 would improve their clarity. We believe
that while it would result in some improvement to the code’s
readability, the details of communication, which form the
bulk of their complexity, would remain largely unchanged.
Furthermore, there is some question as to whether the slice
notation could more cleanly express the array indexing used
by NAS CG or the scalar stencil optimization applied in
NAS MG [9] without sacrificing performance.

5. IMPLEMENT ATION

In this section we describe our implementation of sparse
regions and arrays in A-ZPL. We begin by giving a broad
overview of the implementation and then focus on our sparse
representation.

5.1 Overview

As mentioned in Section 4.2, our implementation strategy is
to associate sparsity patterns with regions rather than ar-
rays. This gives us the ability to amortize overheads related
to storing and iterating over sparse representations when
multiple arrays share the same pattern. Note that neither
NAS CG nor NAS MG benefit from this design since each
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Figure 6: The sparse array of Figure 1 shown as
it would be stored in A-ZPL. (a) The dense vector
of values for this array. The initial element is the
IRV; all other elements correspond to an index in
the sparse region. (b) The lattice for the region
that describes the array’s sparsity pattern. A few of
the nodes are enlarged to indicate their sparse ID
and logical indices. Note that other arrays with this
sparsity pattern would share the same lattice.

uses just a single sparse array. However, in previous work
we have demonstrated its effectiveness [11], and we remain
confident that larger sparse applications will benefit from
this approach.

Our sparse region data structure is a traditional ZPL region
with additional fields tacked on to represent the sparsity
pattern. The traditional region information is used for op-
erations related to the sparse region’s bounding box, such as
determining which processors own the region. The sparsity
pattern is represented using a sparse array representation,
described in the next section. Each element in the sparse
representation has a unique ID from 1 to nnz. This ID is
used to access values in any sparse arrays that are declared
using the region.

Our sparse array data structure uses a traditional 1D ZPL
array to represent a vector of values. Its size is equal to
the number of sparse indices owned by the processor, plus
one to store the IRV. The IRV is stored at position 0. All
other elements are accessed using unique IDs from the region
nodes as indices into the vector (Figure 6).

Implementing sparse A-ZPL statements is simply a mat-
ter of supporting iteration over a region’s sparsity structure
within the context of a dense or sparse region. A loop nest is
generated for each statement’s controlling region, with iter-
ators established for each sparse and dense array referenced
by the statement. If multiple arrays have the same defining
region, they share a single set of iterators.

ZPL’s runtime libraries required modification to work with
sparse regions. These changes could either be done by spe-
cializing each call to work with sparse regions, or by support-
ing generalized iteration over regions via function pointers.
Presently, we are taking the first approach for simplicity,
though we are moving toward a hybrid approach to op-
timize the tradeoffs between code replication and runtime
overheads.

5.2 Our SparseRepresentation

To understand our choice of sparse representation, it is use-
ful to understand the operations that ZPL’s regions and
arrays must support. This list summarizes the most time-
crucial operations and the situations that require them:

region operations:
e row-major iteration
(the common case for most region references)
e iteration in arbitrary directions, dimensions
(certain uses of the @, *@, @ operators)
e operations on region slices
(in, of region operators; dynamic region slices)

array operations:
e ordered array access
(general iteration)
e random array access
(# operator)

The generality of our design requirements presents an ob-
stacle to using many of the standard sparse array represen-
tations since they are typically optimized for a particular
access pattern. For example, the need for efficient iteration
in arbitrary dimensions eliminates the possibility of using
formats that support a particular iteration order such as
CSR. Our need for arbitrary iteration combined with the
fast random access required by slicing and random array
accesses forces us to support a very general-purpose sparse
representation. Qur strategy is therefore to design a for-
mat which can automatically be optimized based on each
program’s specific requirements.

In our sparse representation, every index is logically rep-
resented by an associated node that has: (1) a unique ID
used to access sparse arrays, (2) the logical index that it
represents, and (3) pointers to the next and previous nodes
in each dimension (Figure 6b). This lattice of nodes is a
generalization of a multilist structure [29] and supports the
ability to iterate quickly from any node to its neighbors in
any dimension. The space required by this lattice is O(nnz).

Since the lattice may not be strongly connected, some sort
of sparse directory structure is required to support iteration
over all of the nodes. This is achieved by recursively adding
dummy nodes to the head and tail of each list in the multilist
(Figure 7a). For the dimensions in which these nodes serve
as dummies, their indices are set to be minimal or maximal
integers to provide a simple termination condition during
iteration. The sparse directory supports the ability to iterate
over the entire region in O(nnz) time. A very loose bound
on the required space is (3¢ — 1) - nnz which is O(nnz) if d
is considered a constant.

To provide the random access required by region slicing and
random array accesses, a dense directory structure is added
for each dimension which provides random access to its lists
(Figure 7b). This structure is represented using a hash table
or array, depending on the number of lists to be stored. Since
each list contains o(n) elements, this provides a means for
accessing any index within the region in O(1) 4+ o(n) time—
not quite constant, but reasonably close. An upper bound
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Figure 7: (a) The lattice of Figure 6b, extended to include a sparse directory of dummy header nodes.
Details for a few nodes are shown to indicate their sentinel values. An array of pointers to corner nodes is
also stored. (b) The same data structure, extended to include a dense directory structure. Since most rows
and columns are non-empty, the directories for each dimension are arrays rather than hash tables. Empty
rows and columns refer to a shared dummy list to eliminate special cases. (¢) A naive implementation of
the data structure in part b which uses an array of records to store the node data and additional arrays
for the dense directory and corners. (d) A sample output from our compiler, indicating which fields are
needed for each node type, as well as whether or not the dense and corner directories are required. This
output corresponds to programs that only require row-major iteration orders, such as NAS CG and MG.
Note that next and previous pointers for a row are never required for lattice nodes because they are stored
in row-major order. (e) The simplified data structure that meets the requirements of the compiler analysis in
part d. (f) The layout of this data structure in memory. Each node field is implemented as a separate array,
allocated only for the nodes that require that field. Nodes with positive IDs are lattice nodes. A negative or
zero ID indicates a dumnmy node. Note that an explicit ID no longer needs to be stored for each node.
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Figure 8: These graphs indicate the amount of memory used by the major data structures for class C of each
benchmark on a single processor. (a) For the CG benchmark, A stores the sparse matrix values. CSR is the
memory required for the CSR format used by F774+MPI. RS is the memory required for the sparse region in
A-ZPL. Note that the memory required for vectors P and W is negligible. () In the MG benchmark, U and R
are the two hierarchical arrays and V is the input array. Note that the storage required for V and its sparse

region RS is negligible for our sparse implementation.

on the space required by the dense directory structure is
2d - min(nnz, n®"1) or O(nnz) if d is considered a constant.

The sum of these parts is a very flexible data structure that
supports all of our required operations using space propor-
tional to the number of indices represented by a region.
While the generality of this structure has a certain amount
of overhead (illustrated in Figure 7¢), a clever implementa-
tion of these components admits an implementation whose
memory requirements can be optimized to rival that of CSR.

5.3 Optimizing our SparseRepresentation
Our actual implementation differs from this logical descrip-
tion in several respects. Most importantly, we represent
the lattice nodes using a collection of integer vectors rather
than a vector of records. This decision causes us to repre-
sent pointers in the lattice as vector indices rather than true
pointers. We order the nodes so that all the dummy nodes
are at the front of the vector, and all of the lattice nodes
are at the end in row-major order. The vector is shifted so
that the lattice nodes start at logical index 1 to eliminate
the need for an explicitly-stored node ID.

This approach has several benefits: First, it improves the
spatial locality of lattice traversals, since the “pointers” be-
ing chased are now contiguous in memory rather than strided
by the node size. Second, it allows us to eliminate the “next-
in-row pointers” for the lattice nodes due to the fact that
they are implicit in the memory layout. Third, it allows us
to eliminate the allocation of fields that are not required, or
to allocate them only for the dummy or header nodes, as we
will now describe.

As our compiler generates loop nests and calls to the runtime
libraries, it keeps track of whether the pointers and indices
in each sparse node are required by the generated code. The
same is done for the dense and corner directories. For each
region, the compiler emits a summary of this information as
shown in Figure 7d. This summary is used by the region’s

Table 1: Technical details for the Cray T3E
Location | Arctic Region Supercomp. Center
Processors | 256
Speed | 450 MHz
Memory per proc. | 0.143 GB
Memory model | Distributed Global Address Space

runtime constructor to allocate only the structures that the
program requires. For example, in NAS CG and MG the
compiler detects that the sparse regions are only traversed
in row-major order. Therefore, the setup code will eliminate
the dense directory, much of the sparse directory, and most
of the fields for the lattice and dummy nodes (Figure Te, {).
The result is a representation that is similar to CSR.

6. EXPERIMENT AL RESULTS

The graphs in Figure 8 compare the amount of memory used
by the F77+MPI and A-ZPL implementations of NAS CG
and MG. For CG, our compiler optimized our naive sparse
representation as described in the previous section, caus-
ing the memory usage to rival that of the hand-coded CSR
format. For MG, the memory required for the optimized
sparse region and input array is negligible as compared to
the dense hierarchical arrays, reducing the overall memory
footprint by 30%.

To evaluate the performance obtainable by our compiler,
we ran the A-ZPL implementations of CG and MG on a
Cray T3E and compared the results to the original F77+MPI
implementations. Technical details for the T3E are given in
Table 1. Speedup curves for the class C versions of each
benchmark are shown in Figure 9.

For the CG benchmark, the A-ZPL implementation outper-
forms the F77+MPI version for most of the processor sets
(p < 64), but then loses ground as the number of processors
increases. Its speed advantage on smaller numbers of pro-
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cessors is due to two factors: First, the A-ZPL compiler can
generate crisp loop nests to traverse the sparse region and
array due to its knowledge of their relation to one another.
Second, on the T3E, the A-ZPL compiler implements com-
munication using the SHMEM library, which tends to have
lower overhead than MPI since its communication paradigm
matches that of the architecture.

A-ZPL loses ground on the larger processor sets due to the
overheads associated with the current implementation of its
remap operator. This operator has never been tuned to
take advantage of readily-available static information such
as the flood dimensions of its arguments or its use with the
compiler-defined Indexi arrays. These optimizations are
currently under development, and we expect that their com-
pletion will improve the performance of CG on the larger
processor sets. For the time being, we are pleased to note
that A-ZPL’s speedup is near-linear across all runs.

The A-ZPL implementation of NAS MG does not use the
remap operator, and scales quite nicely for all processor set
sizes. We include speedup results for the traditional dense
ZPL implementation as a basis for comparison. The ZPL
implementation outperforms the F77+MPI version for rea-
sons outlined in previous work [9]. We find that converting
the input array to a sparse format in A-ZPL further reduces
the execution time, though not by much. This is due to the
T3E’s hardware support for aggressive data prefetching in
the presence of regular memory access patterns. The refer-
ences to the input array in the dense implementation benefit
greatly from this prefetching, reducing the advantages of a
sparse representation. For this platform, the greater benefit
to users is in the 30% reduction in memory, allowing them to
run larger problem sizes on smaller numbers of processors.

7. CONCLUSIONS

In this work, we have described how sparse regions sup-
port language-based expression of sparse computation in a
variety of forms—sparse matrices, structural sparsity, and

sparse iteration over dense arrays. We have succeeded in our
goal of supporting expressive sparse parallel computation by
maintaining a dense array syntax and exposing parallel over-
heads in the program’s text. Our approach results in sparse
matrix codes that are a fraction the size of their hand-coded
counterparts and, more importantly, are uncluttered by par-
allel programming details such as communication and data
distribution.

We have described the implementation of our sparse repre-
sentation and its support for general array operations such
as arbitrary iteration and slicing. We have also demon-
strated that our compiler can automatically specialize the
implementation to reduce its memory footprint while ful-
filling a program’s requirements. In our implementation of
NAS CG, this optimization results in memory use that is
similar to that of a hand-coded CSR format. For NAS MG,
the sparse implementation significantly reduces memory re-
quirements as compared to the dense implementations.

Our experiments show that the scalar performance of sparse
A-ZPL codes rivals or exceeds that of their hand-coded MPI
counterparts. Scalability of CG’s sparse matrix-vector mul-
tiplication in A-ZPL is currently limited by communication
overhead on larger processor sets. In spite of this, the perfor-
mance is near-linear and outperforms the hand-coded ver-
sion for 1-64 processors. With NAS MG, A-ZPL demon-
strates good scalability and performance improvements by
using a sparse input array rather than a dense one.

The net result of our work is alanguage that supports sparse
computation using a clean, high-level syntax which results
in good parallel performance. While this paper represents a
good first step toward supporting language-level sparse par-
allel computation, there is still much work to do. Some of
our next steps will include optimizing the remap operator
and broadening the parallel platforms used in this experi-
ment. In the future we also hope to expand our set of sparse
benchmarks to include others that utilize a greater number



of array operations and sparsity patterns. One algorithm of
particular interest will be the Fast Multipole Method [13],
which will require combining the 3D sparsity of this paper
with the hierarchical arrays of our previous work [9] to im-
plement sparse hierarchical computation.
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APPENDIX
A. COMPILER SPECIFICATIONS

The following table summarizes the compilation process used
in our experiments. The compiler, version number, and
command-line arguments used are given for each language.
In addition, the communication mechanism used at runtime
is noted.

Table 2: The compilers and options used for each
language in our experiments.

Cray T3E compilers
| Language || Compiler | Version | Args. | Comm. |

F77+MPI || Cray 90 | 3.3.00 | -O3 | MPI (Cray)
ZPL/ || UW zc 1.17a SHMEM
A-7ZPL || Cray cc 6.4.00 | -0O3

B. EXPERIMENTAL TIMINGS

Table 3 contains the best observed times for each language
and benchmark. These were used to compute the speedup
graphs of Section 6.

Table 3: The raw timings used to compute speedups
in our experiments. All times are in seconds.
Cray T9E — Class C — NAS CG

[_processors ] 8 16 32 64 128 256 |

[[F77+MPI [[ 2922.03 | 1489.15 | 590.65 | 307.45 | 109.53 | 65.14 |
[ A-ZPL || 2620.58 | 1314.66 | 553.95 | 285.05 | 144.40 | 84.01 |

Cray T3E — Class C — NAS MG

[ processors [ 16 32 64 128 256 |
F77+MPI || 129.08 | 70.95 | 32.12 | 18.11 | 10.93
ZPL || 120.09 | 57.46 | 31.80 | 15.19 8.20

A-ZPL 114.61 58.99 29.81 14.85 7.83




