
Abstractions for Dynamic Data Distribution

Steven J. Deitz? Bradford L. Chamberlain?† Lawrence Snyder?

?University of Washington †Cray Inc.
Seattle, WA 98195 Seattle, WA 98104

{deitz,brad,snyder}@cs.washington.edu bradc@cray.com

Abstract

Processor layout and data distribution are important to
performance-oriented parallel computation, yet high-level
language support that helps programmers address these is-
sues is often inadequate. This paper presents a trio of ab-
stract high-level language constructs—grids, distributions,
and regions—that let programmers manipulate processor
layout and data distribution. Grids abstract processor sets,
regions abstract index sets, and distributions abstract map-
pings from index sets to processor sets. Each of these is a
first-class concept, supporting dynamic data reallocation
and redistribution as well as dynamic manipulation of the
processor set. This paper illustrates uses of these constructs
in the solutions to several motivating parallel programming
problems.

1. Introduction

Languages and libraries for parallel programming can
roughly be divided into two categories:local-view facili-
ties andglobal-viewfacilities. Local-view facilities, typified
by message passing libraries (e.g., MPI), Co-Array Fortran,
Titanium, and UPC, require programmers to express their
computation from the point of view of a single processor.
On the other hand, global-view facilities, typified by HPF
and ZPL, allow programmers to express their computation
as a whole (without excessive regard to the multiple proces-
sors that will execute it).

Both schemes must handle dynamic data distributions
because important applications such as Adaptive Mesh Re-
finement (AMR) require data to be redistributed on the
fly. Local-view languages handle dynamic distributions be-
cause with a minimum of abstraction the programmer must
implement everything; changing the organization of data is
complicated, but it is possible with the same abstractions
necessary for managing all the normal details of data reallo-

cation, inter-processor communication, and intra-processor
copying.

On the other hand, global-view languages, which rely
heavily on high-level abstractions to insulate programmers
from low-level details, present much greater challenges for
the language designer. Programmers need to describe, ab-
stractly, their preferences for initial data distribution, and
then must be provided with mechanisms to move data
around in response to dynamically changing conditions.

In this paper we present a hierarchy of constructs—grids,
distributions, regions, and arrays—created for ZPL for dy-
namically distributing data, and we illustrate that they are
convenient for solving commonly arising parallel program-
ming problems. Figure 1 illustrates these constructs with a
simple example. Grids abstract processor sets. In our ex-
ample, gridG is a 2 × 2 processor set. Distributions ab-
stract mappings from index sets to processor sets. Distribu-
tion D divides the6 × 4 index set into equally sized blocks
and distributes these blocks acrossG. Regions abstract in-
dex sets. RegionR is the6 × 4 index set that is distributed
byD acrossG. Parallel arrays allocate data over regions. Ar-
ray A contains24 values corresponding to the positions in
R; D distributes these values acrossG.

A key property of our solution is that it allows program-
mers to assess and to control the communication demands
of dynamically distributing data. Global-view language ab-
stractions for supporting dynamic data distribution have not
previously done so. For example, HPF includes directives
for specifying data distributions, but the communication re-
quirements for implementing the specified data motion are
invisible to programmers. Our solution avoids this problem
because, in part, the hierarchy of abstractions provides a
layer of insulation around the processors.

In the next section, we introduce a subset of ZPL. In
Section 3, we present the grid and distribution abstractions,
which allow programmers to specify dynamic data distri-
butions. In Section 4, we outline solutions to several moti-
vating parallel programming problems. We describe related
work in Section 5 and conclude in Section 6.



A : [R] double;

R : [D] region = [1..6, 1..4];

D : [G] distribution = [blk(1,6), blk(1,4)];

G : grid = [2, 2];Grid
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Figure 1. An example of a grid, distribution, region, and array organized in a simple hierarchy. The
array A allocates data over region R. The data values are distributed according to distribution D over
the processors in grid G.

2. Introduction to ZPL

ZPL is a global-view parallel programming language de-
veloped at the University of Washington. The current imple-
mentation is a compiler that translates ZPL to C with calls
to MPI, PVM, or SHMEM, as the user chooses. In this sec-
tion, we present a brief introduction to ZPL. For a more de-
tailed introduction to ZPL, the interested reader is referred
to the literature [2, 12].

2.1. Basic Concepts

The central abstraction underlying ZPL is theregion[3].
Regions are index sets with no associated data. To declare
then× n regionR and the(n+2)× (n+2) regionBigR,
which expandsR at its border, a programmer writes

region
R = [1..n, 1..n];
BigR = [0..n+1, 0..n+1];

Regions are used to specify indices for computation and
to declareparallel arrays. To declare parallel arrays using
regionsR andBigR, a programmer writes

var
A, B : [BigR] double;
C : [R] double;

A value is allocated for each index in the array’s region, re-
sulting in ann× n array forC and(n+2)× (n+2) arrays
for A andB.

To specify indices for computation so that the element-
wise sums of the interiors ofA andB are stored in the cor-
responding positions inC, a programmer writes
[R] C := A + B;

In ZPL, each region’s indices are distributed over a set of
processors, implying a distribution for any arrays declared
using that region. (Later we will see how modifying a re-
gion’s distribution will result in the reallocation of an ar-
ray.) Scalars, on the other hand, are replicated and kept con-
sistent on every processor by the language’s semantics. For
example, to declare the scalar integern used in the region
specifications above, a programmer writes
var n : integer;

In addition to the parallel array, ZPL supports a second
type of array called anindexed array. Like scalars, indexed
arrays are replicated and kept consistent. As the name im-
plies, values in indexed arrays are accessed throughindex-
ing, much like in C and Fortran. Indexing is disallowed for
parallel arrays whose values can only be accessed using re-
gions.

Indexed arrays can be composed with parallel arrays. To
declare an indexed array of parallel arrays and a parallel ar-
ray of indexed arrays, a programmer writes
var

IofP : array[1..n] of [R] double;
PofI : [R] array[1..n] of double;

Indexed arrays can be composed arbitrarily unlike parallel
arrays. It is illegal to declare a parallel array of parallelar-
rays.



2.2. Parallel Array Operators

For computations that are not strictly element-wise, ZPL
supports several array operators, each providing a different
access pattern and communication style. Theat operator
(@) shifts an array’s values by an offset vector called adi-
rection. As an example, the statement

[R] A := A@[0, -1] + A@[0, 1];

replaces each element in the interior ofA with the sum of
its left and right neighbors.

Thereduce operator(op<<) computes reductions using
either built-in or user-defined combining operators [6]. It
can be used to reduce values in a parallel array to a scalar or
parallel subarray. As an example, the following statements
compute the minimum value in the interior ofA and store
the sums of the rows ofA in its first column:

var minval : double;

[R] minval := min<< A;
[0..n+1, 0] A := +<<[BigR] A;

Theremap operator(#) generalizes gather and scatter; it
is used to move data within or between arrays in more com-
plicated patterns than the shifts supported by the at opera-
tor. Using the built-in constantIndexi arrays, values in an
array can be transposed. TheIndexi arrays contain thei-
dimension index values. For example, the first twoIndexi
arrays over the region given by[1..3,1..3] are

Index1 = 1 1 1 Index2 = 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3

To transpose the values ofA, a programmer can write

[BigR] A := A#[Index2, Index1];

The implementation of the remap operator is necessarily
complex, though its use can often be optimized [7].

2.3. WYSIWYG Performance

A key aspect of ZPL (and one that distinguishes it
from all other global-view parallel languages) is its per-
formance model. Known as thewhat-you-see-is-what-you-
get(WYSIWYG) performance model, it specifies when the
program may require communication and how that commu-
nication will be implemented. The indication of when com-
munication must be generated is indicated by the use of cer-
tain operators. All arrays that interact in a given statement
must have the same distribution as all other arrays unless the
remap operator is applied to it. So, for example, when pro-
grammers write

[R] C := A + B;

they know there will be no communication because ZPL’s
performance model guarantees that basic element-wise ar-
ray computations never require communication.

However, when programmers write a similar expression

[R] A := A@[0, -1] + A@[0, 1];

they know there probably will be communication (to refer
to A’s westerly and easterly neighbors) because@s induce
communication. Furthermore, they know that the communi-
cation will be a simple point-to-point communication. Sim-
ilarly, the reduction operatorop<< typically induces log-
depth communication to combine values across processors.
The remap operator# induces potentially all-to-all commu-
nication and is considered expensive.

Thus, although ZPL is a global-view language, the com-
munication is explicit: Whenever programmers use an op-
erator inducing communication, they know it. The WYSI-
WYG model contributes to faster programs by giving pro-
grammers knowledge about communication, allowing them
to choose solutions that minimize communication over-
heads without requiring them to actually program it.

3. Grids, Distributions, Regions, Arrays

In this section, we introducegrids and distributions.
These two constructs give programmers control over data
decomposition. We then reintroduce regions as first-class
constants or variables with associated types and values. We
show that it is possible to dynamically redistribute and re-
allocate data by merely reassigning grids, distributions,or
regions

3.1. Grids

ZPL’s grid construct lets programmers abstract the pro-
cessor set. For example, the following three grids organize
the processors:

const
p : integer = numLocales();

grid
G1 = [1, 1..p];
G2 = [1..p, 1];
G3 = [1..p/2, 1..2];

Grid G1 organizes the processors into a1 × p grid, grid
G2 into a p × 1 grid, and gridG3 into a p/2 × 2 grid.
The built-in procedurenumLocales returns the number
of processors executing the program.

Although it is easy to determine from the above declara-
tions that each grid contains every processor, it is impossi-
ble to control where the processors are positioned. Allocat-
ing specific processors to specific positions in a grid is pos-
sible with indexed arrays of non-repeating processor IDs.
The size and shape of the grid is inherited from the size and
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Figure 2. An example showing grids G1, G2,
and G3 from Section 3.1. For illustrative pur-
poses, we assume there are six processors.

shape of the indexed array. For example, the following dec-
larations create a pair of2× 2 grids that split the first eight
processors into two disjoint sets based on whether the pro-
cessor ID is even or odd:

const
a : array[1..2, 1..2] of integer

= {{0, 2}, {4, 6}};
b : array[1..2, 1..2] of integer

= {{1, 3}, {5, 7}};
grid
G4 = a;
G5 = b;

The ability to create disjoint grids extends the applicabil-
ity of ZPL into problems traditionally characterized astask
parallel [5].

Programmers are often unconcerned with which proces-
sors map to which positions of a grid, and in this case the
first syntax is sufficient. Much of the time, even the number
of processors allocated to each grid dimension is more than
programmers wish to consider. The keywordauto asks the
compiler and runtime to heuristically allocate processorsto
a grid dimension. For example, the following grid declara-
tion uses theauto keyword to divide the processors be-
tween the first two dimensions of gridG6, leaving the last
dimension degenerate:

grid G6 = [auto, auto, 1];

With theauto keyword, a grid dimension is indexed start-
ing with 1 and ending with the number of processors allo-
cated to that dimension.

The syntax we have been using to declare grids is syntac-
tic sugar for constant grid declarations. Grids are first-class
concepts. They have types and values associated with them

and can be declared as variables. Without changing the se-
mantics of the grids we have introduced in this section, we
can redeclare all of the above grids as follows:
const

G1 : grid<. ,..> = [1, 1..p];
G2 : grid<..,. > = [1..p, 1];
G3 : grid<..,..> = [1..p/2, 1..2];
G4 : grid<..,..> = a;
G5 : grid<..,..> = b;
G6 : grid<..,..,.> = [auto, auto, 1];

Notice that the type of a grid is not simplygrid, but also
includes the rank of the grid. In addition, whether the di-
mensionmaybe allocated to more than one processor (..)
or not (.) is part of the type. While the casual program-
mer can use “..” everywhere, using “.” could result in a
more optimized program. The type of a grid can be inferred
from its initializer; this inference is always done with the
syntactic sugar. In this case, the keywordgrid is a suffi-
cient type specification. The BNF for grid types and values
can be found in Figure 4. By changing the keywordconst
tovar, we can create mutable grids that do not need initial-
izers.

3.2. Distributions

ZPL’s distribution construct lets programmers map log-
ical indices to grids. For example, ifG is a 2D grid where
neither dimension is degenerate,n andm are integers, and
a1 anda2 are 1D indexed arrays of integers, then the fol-
lowing distributions map indices to gridG using two built-in
distributions:
distribution

D1 : G = [blk(1,n), blk(1,m)];
D2 : G = [cut(a1), cut(a2)];

Theblk distribution takes as its arguments upper and lower
index bounds and distributes the indices between these
bounds overG in a block fashion. Thecut distribution
takes as its argument a one-dimensional indexed array of in-
tegers. The indexed array must be defined over the grid di-
mension’s range (excluding the last processor). Its elements,
which must be monotonically increasing, contain the high-
est indices mapped to the grid processor referred to by its
index.

The syntax encountered so far for declaring a distribu-
tion is syntactic sugar for a constant distribution declara-
tion. Distributions are first-class concepts with associated
types and values. Without changing the semantics, we can
redeclare distributionsD1 andD2 as follows:
const

D1 : [G] distribution<block,block>
= [blk(1,n), blk(1,m)];

D2 : [G] distribution<block,block>
= [cut(a1), cut(a2)];

Distributions are statically bound to grids; in this ex-
ample,D1 andD2 are bound toG. The distribution’s type
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Figure 3. An example showing distributions
D1 and D2 from Section 3.2. For illustrative
purposes, we take G to be a 2 by 3 grid of pro-
cessors. We assume values of 4 and 6 for n
and m respectively and illustrate the 4 by 6 in-
dex set over these two distributions. The ar-
ray a1 is taken to contain the single integer 3,
and array a2 is taken to contain the two inte-
gers 2 and 5.

is composed of the grid’s type, the rank of the distribu-
tion (which must match the rank of the grid), and the per-
dimension distribution types. The grid is not part of the dis-
tribution’s type. For example, we can gather the following
information from the type ofD1: It is a 2D distribution built
on a non-degenerate 2D grid and both of it’s dimensions use
block distribution functions. Both theblk andcut distri-
butions are built-in distribution functions and have ablock
distribution function type.

There are five distribution function types. We have al-
ready discussed theblock type. Thecyclic type im-
plements the standard cyclic distribution instantiated bythe
built-in distributioncyc. The multiblock distribution
function type implements distributions like block-cyclic
with blkcyc. It is also easy to image a cut-cyclic distribu-
tion implemented withcutcyc of themultiblock type.
The nondist distribution function type with thenull
distribution optimizes the degenerate case where the grid
dimension is allocated to only one processor. Lastly, the
irregular distribution type is a catch-all for distribu-
tions that do not fall into the other categories. (In this paper,
we focus only on dimension-orthogonal distributions omit-
ting any discussion of multidimensional distributions like
recursive coordinate bisection.)

By separating a distribution’s type from its value, our
implementation strategy for differing distributions is appar-
ent. The broad definitions of the types limits the complexity
of the compiler and runtime. For example, they can treat the
cut and block distribution identically because the loop struc-
ture and communication patterns are similar. At the same
time, new distributions are easy to add to the language since
the amount of code required is small and modular. We are
currently finalizing the mechanisms which would let ZPL
programmers define their own distributions.

The BNF for distribution types and values can be found
in Figure 4. As with grids, by changing the keywordconst

tovar, we can create distributions that may be changed and
need not be initialized.

3.3. Regions

In Section 2, we encountered ZPL’s regions. A region’s
distribution is controlled through the distribution it is de-
clared over. Regions are bound to distributions in the same
way that distributions are bound to grids. For example, the
following declarations define twon× n regions, one bound
to D1 and one bound toD2:

region
R1 : D1 = [1..n, 1..n];
R2 : D2 = [1..n, 1..n];

Recall that regions are used to declare parallel arrays. To de-
clare parallel arrays overR1 andR2, a programmer writes

var
A : [R1] double;
B : [R2] double;

This creates a static hierarchy from grids to distributionsto
regions and finally to arrays. In particular, the elements of
an array are associated with the indices of a region which
are mapped to a processor in a grid via a distribution. This
hierarchy is used to control array distributions. Changing
any piece of this hierarchy potentially changes the distribu-
tion of data and/or computation without requiring the user
to manage the details or modify the expression of the com-
putation that acts on the arrays.

Since A and B are distributed using different distri-
butions, they cannot interact without explicit use of the
remap operator. This maintains the WYSIWYG perfor-
mance model in the presence of multiple grids and distri-
butions. To copy the values fromB toA, programmers write

[R1] A := B#[Index1, Index2];

Programmers can also elide the defaultith map arrays by
writing

[R1] A := B#[,];

Unlike the grid-distribution and region-array binding, the
distribution-region binding is optional. When a distribution-
less region is used to control computation, the distribution
is inherited from the arrays involved. For example, in the
statement

[1..n, 1..n] A := B#[,];

the anonymous region inherits its distribution from arrayA.
When distributionless regions are used to declare parallel
arrays, the built-in per-rank distributions and grids called
implicit distributionsand implicit grids are applied. This
lets programmers who do not wish to think about grids and
distributions use ZPL in a simpler form.

The syntax for a region declaration is syntactic sugar for
a constant region declaration. Regions are first-class with



associated types and values. Without changing the seman-
tics, we can redeclareR1 andR2 as follows:

const
R1 : [D1] region<..,..> = [1..n, 1..n];
R2 : [D2] region<..,..> = [1..n, 1..n];

The type of a region includes its rank and its distribu-
tion’s type. In addition, it includes per-dimension infor-
mation specifying the dimension’s type (degenerate, range,
replicated,etc.) unimportant to this paper [3]. The BNF for
region types and values can be found in Figure 4. As with
grids and distributions, by changing the keywordconst to
var, we can create mutable regions that do not need initial-
izers.

3.4. Dynamic Grids, Distributions, and Regions

The following code illustrates a simple hierarchy of grid,
distribution, region, and array:

var
G : grid = [auto, auto];
D : [G] distribution = [cut(a1), cut(a2)];
R : [D] region = [1..nx, 1..ny];
A : [R] double;

Notice that the dimensional type information for the grid,
distribution, and region are inferred from the initializers.
SinceG, D, andR are variables, they can be changed. Such
changes result in further changes that ripple down the hier-
archy. For example, changing a region effects the data in ar-
rays defined by that region. Changing a distribution effects
all of its regions and, consequently, all of the arrays that are
declared over these regions. These rippling effects can ei-
ther preserve the array’s contents or not. Which semantics
are preferable depends on the application. In destructive as-
signment (<==) of grids, distributions, or regions, array data
values are not preserved.

For example, we can use destructive assignment to trans-
pose the size and shape ofR as in the following statement:

R <== [1..ny, 1..nx];

The data values inA are lost; its new data values are unini-
tialized. The number of data values on each processor may
have changed. Since the newly allocatedA is shaped to store
the transpose of the old data, we may want to transpose the
data from the oldA to the newA. In this case, we would
need a temporary array to store the data while we reallo-
cated the array:

var
RT : [D] region = [1..ny, 1..nx];
AT : [RT] double;

AT := A#[Index2, Index1];
R <== RT;
A := AT;

A second style of assignment, preserving assignment
(<=#), differs from destructive assignment in that the data

in the array is moved. Communication can be expensive in
preserving assignment, and this is indicated in the opera-
tor’s resemblance to the remap operator. The data is pre-
served for every index that is preserved. Data is lost for
indices that are lost and new indices are uninitialized. In
the above example, destructive assignment was appropriate
since we wanted to transpose the data and presumably reuse
the space ofA.

Suppose instead of transposing the data, we want to re-
distribute the data inA so that instead of using thecut dis-
tribution, we used theblk distribution. The following code
will do the trick:

D <=# [blk(1,nx), blk(1,ny)];

RegionR’s indices are redistributed according to the new
distribution value. Then the data in arrayA is redistributed;
this typically requires communication.

In the next section, these assignments are illustrated in
various motivating examples.

4. Examples

This section illustrates, in four examples, the use of dy-
namic grids, distributions, and regions. For each example,
we pose a problem, outline a solution in ZPL, and then in-
terpret and comment on the code.

4.1. Computational Zoom

Problem. This problem approximates aspects of a simplifi-
cation of the Adaptive Mesh Refinement (AMR) technique.
Assume an array computation with the property that the
more time spent computing on some portion of the array,
the more precise the solution is on that portion. This prob-
lem asks the programmer to compute an approximate so-
lution over the entire array, determine a portion of the ar-
ray where more precision is important, and compute an im-
proved solution usingall the processors.
Solution.

const
G : grid = [auto, auto];
D : [G] distribution = [blk(1,nx), blk(1,ny)];
R : [D] region = [1..nx, 1..ny];

var
A : [R] double;
DZoom : [G] distribution<block,block>;
RZoom : [DZoom] region<..,..>;
Zoom : [RZoom] double;
x1, x2, y1, y2 : integer;

[R] computeApprox(A, x1, x2, y1, y2);
DZoom <== [blk(x1,x2), blk(y1,y2)];
RZoom <== [x1..x2, y1..y2];
[RZoom] Zoom := A#[,];
[RZoom] computeMore(Zoom);
[x1..x2, y1..y2] A := Zoom#[,];



grid-type ::=grid { ‘<’ grid-dimension-type{ ‘,’ grid-dimension-type} ‘>’ }
grid-dimension-type ::= ‘.’| ‘..’
grid-value ::= ‘[’ grid-range{ ‘,’ grid-range} ‘]’ | integer-indexed-array-expression
grid-range ::=auto | integer-expression| integer-expression ‘..’ integer-expression

distribution-type ::= ‘[’ grid-expression ‘]’distribution { ‘<’ distribution-dimension-type{ ‘,’ distribution-dimension-type} ‘>’ }
distribution-dimension-type ::=nondist | block | cyclic | multiblock | irregular
distribution-value ::= ‘[’ distribution-function{ ‘,’ distribution-function} ‘]’
distribution-function ::= distribution-identifier [ ‘(’ expression{ ‘,’ expression} ‘)’ ]

region-type ::= [ ‘[’ distribution-expression ‘]’ ]region { ‘<’ region-dimension-type{ ‘,’ region-dimension-type} ‘>’ }
region-dimension-type ::= ‘.’| ‘..’ | ‘*’ | ‘::’
region-value ::= ‘[’ region-range{ ‘,’ region-range} ‘]’
region-range ::= integer-expression| integer-expression ‘..’ integer-expression| ‘*’ | ‘::’

Figure 4. Collected BNF for the types and values of grids, distributions, and regions. In this extended
BNF, curly braces indicate 0 or more instances of the enclosed syntax and square brackets indicate
0 or 1 instances of the enclosed syntax.

Discussion. In this program, we start by declaring gridG,
distributionD, regionR, and arrayA over which we will
compute an approximate solution. We then declare distri-
butionDZoom, regionRZoom, and arrayZoom over which
we will compute an improved solution. Then we passA to
the computeApprox procedure which computes an ap-
proximate solution overA and assigns values to the inte-
gers which define the indices where more precision is re-
quired. In the next two lines, we assign values toDZoom and
RZoom. Because the changes ripple down the hierarchy, ar-
rayZoom is allocated and distributed across the processors.
The data is moved intoZoom using the remap operator in
the next line. Since the area inR that corresponds toRZoom
may only exist on a subset of the processors and/or be un-
evenly distributed, a potentially large amount of data may
need to be transferred between processors. After procedure
computeMore is called to compute an improved solution,
the remap operator is used again to move the data back from
Zoom to A. Notice that we cannot use regionRZoom here
since its distribution isDZoom. Instead, the anonymous re-
gion gets its distribution,D, fromA.

Note that an AMR code could be constructed by execut-
ing multiple instances of this example in a recursive context
and interpolating the zoomed areas. By using indexed ar-
rays of grids, distributions, and regions, the contents could
be saved between iterations.

4.2. FFT Corner Turn

Problem. A common way of computing the Fast Fourier
Transform (FFT) of a multi-dimensional array in parallel is
to leave at least one dimension of the array undistributed.
Then the FFT can be computed by executing 1D FFTs al-
ternated with corner turns. This problem asks the program-

mer to compute the FFT of annx × ny × nz array. As-
sume only one dimension of the array is distributed, and
thus we only need to do a single corner turn. To conserve
space, the solution may use only two arrays. Because the
lengths of the dimensions are different, load balancing must
be taken into account; the arrays before and after the cor-
ner turn should be distributed differently.
Solution.

const
p : integer = numLocales();
G : grid = [p, 1, 1];
D : [G] distribution
= [blk(1,nx), null, null];

R : [D] region = [1..nx, 1..ny, 1..nz];
DT : [G] distribution

= [blk(1,ny), null, null];
RT : [DT] region = [1..ny, 1..nz, 1..nx];

var
DX1 : [G] distribution = D;
DX2 : [G] distribution = D;
RX1 : [DX1] region = R;
RX2 : [DX2] region = R;
X1 : [RX1] complex;
X2 : [RX2] complex;

[R] computeFFT2(X1, X2);
[R] computeFFT3(X2, X1);
DX2 <== DT;
RX2 <== RT;
[RT] X2 := X1#[Index3, Index1, Index2];
DX1 <== DT;
RX1 <== RT;
[RT] computeFFT3(X2, X1);

Discussion. To focus on the corner turn, we omit definitions
for the functionscomputeFFTi(A1, A2) which com-
pute 1D FFTs on theith dimension ofA1 (assuming that di-
mension is not distributed) and leave the result inA2, which
must have the same distribution asA1.

The constant regionsR andRT define the problem space



before and after the corner turn. Because they are bound to
different distributions, they are distributed in different ways.
The arraysX1 andX2 are bound to variable distributions
and regions thus allowing their distributions to be changed
in the program.

In the first two lines of the computation, we compute 1D
FFTs on the two undistributed dimensions ofX1. We then
changeDX2 andRX2 so thatX2 is allocated to hold the cor-
ner turn ofX1 in a load-balanced way. The remap operator
is used to compute the corner turn. To compute the final 1D
FFT, we first reallocateX1 for use as the scratch array.

4.3. Sample Sort

Problem. In this problem we want to sort an array of val-
ues by partially sorting them into per-processor sets, trans-
ferring the different sets to different processors, and locally
sorting them. After the local sort is completed, we want to
load balance the array so that each processor has a more bal-
anced number of data values.
Solution.

const
p : integer = numLocales();
G : grid = [auto];
D : [G] distribution = [blk(1, n)];
R : [D] region = [1..n];

var
DA : [G] distribution = D;
RA : [DA] region = R;
A : [RA] double;
T : [R] double;
keys, cuts :

array[1..p-1] of integer;

[R] determineKeys(A, keys, cuts, p);
[R] T := A;
DA <== [cut(cuts)];
globalSort(T, A);
localSort(A);
DA <=# D;

Discussion. The constant regionR is the balanced problem
space. ArrayA is initially allocated overR. We first deter-
minep-1 keys which we will use to split the contents ofA.
Then we can copy the contents ofA to temporary arrayT.
By changingDA to use acut distribution based on the num-
ber of values between the keys, arrayA is reallocated, each
processor containing a potentially different number of val-
ues. Next, we need to move the data fromT to A, in the
globalSort procedure, and then locally sort the values
in A, in thelocalSort procedure. These procedures are
omitted. Finally, by changing the distribution ofA back to
D, we can rebalance the load.

4.4. Processor Homogeneity Test

Problem. Given a new machine, we want to see how greatly
the processor layout affects an application’s performance.

Solution.

const
p : integer = numLocales();

var
procs : array[1..p] of integer;
G : grid<..>;

repeat
permute(procs, p);
G <== procs;
-- Run and time program

until /* condition */;

Discussion. The solution in ZPL is easy to write and largely
independent of the application. The code above indicates
what changes would need to be made. Grids need to be ar-
rays of processor IDs so that they can be permuted. The rank
of the grids depends on the application. In the code above,
we use a 1D array of integers to store processor IDs. In-
side a loop, we assign the grid. Since the application will
presumably initialize all the data, we can use destructive as-
signment. If, for some reason (e.g., time-consuming initial-
ization process), data did need to be preserved and shuffled,
using preserving assignment would be appropriate.

5. Related Work

The most prevalent “language” currently used for par-
allel programming is sequential C or Fortran with calls to
MPI [9]. Its popularity is primarily due to its generality and
portability. In particular, since MPI programmers write in
an SPMD style calling low-level send and receive routines,
they can express any conceivable data distribution and be
confident that their code will run on any parallel platform.
The downside to MPI is that it is fundamentally a local-view
approach requiring the programmer to manage details of
data distribution, parallel computation, and interprocessor
communication. This is tedious and error-prone, and it often
obscures the logical computation. In contrast, ZPL’s grids
and distributions provide the programmer with abstractions
to express data distribution at a global view, leaving the nu-
merous implementation details to the compiler and runtime.

Global shared address space languages such as Co-Array
Fortran [11], Unified Parallel C [1], and Titanium [14] re-
quire the programmer to think in an SPMD style as with
MPI, but provide abstractions that ease the burden of data
distribution and communication somewhat. The specific
concepts provided by each language differ and are worth
surveying briefly.

Co-Array Fortran (CAF) is a superset of Fortran 90 that
supports a new kind of array dimension, theco-dimension.
The co-dimension provides a logical view of processor
space. A variable declared with a co-dimension results in a
value with the specified type to be allocated for each image
of the executable as described by the co-dimension’s range.
One common usage is to implement a blocked array decom-



position by declaring an array variable with a co-dimension
to represent each processor’s sub-array block. Each SPMD
image of the program can refer to remote copies of a vari-
able simply by indexing into the variable’s co-dimension.
This syntax provides a performance model of sorts since
all remote references are easily identified by co-dimension
indexing. Co-dimension specifications are very similar to
ZPL’s grid concept since they provide an abstract, indexed
view of processor space. Unlike ZPL’s grids, co-dimensions
are not a first-class concept and do not support the ability
to map processors to specific locations within the logical
processor set. Moreover, the language’s SPMD nature re-
quires the programmer to go to greater effort to implement
distributions that are more complex than a simple blocked
decomposition—typically this would involve manipulating
indices and/or mapping multiple program instances to a sin-
gle physical processor.

Unified Parallel C (UPC) supports a slightly more global
view of parallel programming than CAF. Its array declara-
tions are interpreted as being in a shared memory space that
is partitioned across processors, allowing distributed arrays
to be declared wholesale rather than replaced into local per-
image segments. Array elements are distributed cyclically
by default and may also be distributed in a block-cyclic
manner by specifying a block size. UPC’s distributions take
a 1-dimensional view of the array’s elements, making it dif-
ficult to achieve distributions that are logically multidimen-
sional. UPC currently only supports a single, flat view of
the processor set, although users can presumably build their
own abstractions using C constructs and explicit mapping.
It also bears mentioning that while UPC supports global ar-
ray declarations and a forall-style loop that partitions iter-
ations among processors, the code is still SPMD and re-
quires a certain degree of explicit communication and syn-
chronization between program images to work correctly and
achieve good performance.

Titanium is an SPMD variant of Java that supports a
shared address space similar to UPC’s. In Titanium, blocked
array distributions are typically achieved by allocating an
array object in the code, which results in an array per pro-
cessor as in CAF. A replicated “directory” array is then used
to map each processor’s index to its local portion of the ar-
ray. As with CAF and UPC, such idioms support blocked
decompositions well but require additional work for users
who require more complex distributions. Titanium’s object-
oriented nature is likely to ease this burden somewhat, since
one can imagine users creating processor view classes and
data distribution interfaces to implement abstractions like
those in ZPL. In doing so, the primary disadvantage is that
code must be written in the SPMD style rather than taking
a global view of the computation.

OpenMP [4] is an example of a parallel language that
supports a global view of computation by assuming a flat

memory that is shared by its computational threads. In such
a model, processor views, data distributions, and locality
have no real consequence, and thus OpenMP does not sup-
port concepts that mirror those described in this paper. How-
ever it does support a “schedule” clause as part of its for-
loop annotation that indicates how loop iterations should be
assigned to the implementing threads. The schedules tend
to distribute iterations in a blocked style, though the assign-
ment of blocks to threads can be done dynamically to help
tolerate dynamic load imbalances. A drawback to OpenMP
is that the lack of actual, scalable architectures that support
a flat shared memory requires OpenMP programmers to be
concerned with locality in order to maximize performance.
This has resulted in a common usage pattern today where
MPI is utilized for the coarse-grained decomposition of a
problem across a cluster’s nodes while OpenMP is used to
manage the parallelism at each node because of its simplic-
ity and reduced overheads in such a context.

High Performance Fortran (HPF) [8] is another global
view language, and one that supports data distributions and
a logical processor view. HPF programmers express these
concepts in the form of directives that can be used to an-
notate existing Fortran programs. HPF’s data distributions
include dimensional block, cyclic, and degenerate distribu-
tions similar to those described in Section 3.2. The main
difference between these annotations and ZPL’s approach is
that HPF’s directives are not first-class or named. This limits
a programmer’s ability to modify distributions or processor
views in an abstract way and makes it difficult to modularize
routines by allowing distributions and processor grids to be
passed as parameters. HPF’s directives are also not imper-
ative, giving the user an ill-defined implementation model
to code against [10]. In particular, whereas particular oper-
ators identify communication in ZPL, it is invisible in HPF,
making it difficult to reason about. It is worthwhile to men-
tion that although the official HPF support for distributions
was fairly modest, research-based versions of the language
sought to support more aggressive distributions such as re-
cursive coordinate bisection [13].

6. Conclusions and Future Work

The grid, distribution, and region are powerful abstrac-
tions for specifying parallel computation at a high level.
They allow the compiler and runtime to manage details of
data distribution, communication, redistribution, and real-
location while ensuring that the costs associated with these
operations are manifest in the code. The hierarchical and
modular nature of the abstractions maintains the global
view of the computation by insulating the program from
data distribution and keeping separable programmer con-
cerns separate.

Future work will address an evaluation of the perfor-



mance of these constructs. We are also looking into the pos-
sibility of user-defined distributions that would provide ex-
tensibility.
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